kafka 集群是如何选择 leader,你知道吗?

这篇具有很好参考价值的文章主要介绍了kafka 集群是如何选择 leader,你知道吗?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

kafka集群是由多个broker节点组成,这里面包含了许多的知识点,以下的这些问题你都知道吗?

  • 你知道topic的分区leader是怎么选举的吗?

  • 你知道zookeeper中存储了kafka的什么信息吗?起到什么做呢?

  • 你知道kafka消息文件是怎么存储的吗?

  • 如果kafkaleader节点或者follower节点发生故障,消息会丢失吗?如何保证消息的一致性和可靠性呢?

如果你对这些问题比较模糊的话,那么很有必要看看本文,去了解以下kafka的核心设计,本文主要基于kafka3.x 版本讲解。

kafka broker 核心机制

kafka 集群整体架构

kafka 集群是由多个kafka broker通过连同一个zookeeper组成,那么他们是如何协同工作对外提供服务的呢?zookeeper中又存储了什么信息呢?

kafka 集群是如何选择 leader,你知道吗?

  1. kafka broker启动后,会在zookeeper/brokers/ids路径下注册。

  2. 同时,其中一个broker会被选举为控制器(Kafka Controller)。选举规则也很简单,谁先注册到zookeeper中的/controller节点,谁就是控制器。Controller主要负责管理整个集群中所有分区和副本的状态

  3. Kafka Controller会进行Leader选择,比如上图中针对TopicA中的 0 号分区,选择broker0作为Leader, 然后会将选择的节点信息注册到zookeeper/brokers/topics路径下,记录谁是Leader,有哪些服务器可用。

  4. 被选举为Leadertopic分区提供对外的读写服务。为什么只有Leader节点提供读写服务,而不是设计成主从方式,Follower提供读服务呢?

  • 为了保证数据的一致性,因为消息同步延迟,可能导致消费者从不同节点读取导致不一致。

  • kafka 设计目的是分布式日志系统,不是一个读多写少的场景,kafka 的读写基本是对等的。

  • 主从方式的话带来设计上的复杂度。

kafka leader 选举机制

那么问题来了,kafkatopic分区是如何选择leader的呢?为了更好的阐述,我们先来理解下面 3 个概念。

  • ISR:表示和 Leader 保持同步的 Follower 集合。如果 Follower 长时间未向 Leader 发送通信请求或同步数据,则该 Follower 将被踢出 ISR。该时间阈值由replica.lag.time.max.ms参数设定,默认 30sLeader 发生故障之后,就会从 ISR 中选举新的Leader

  • OSR:表示 FollowerLeader 副本同步时,延迟过多的副本。

  • AR: 指的是分区中的所有副本,所以AR = ISR + OSR

Kafka Controller选举Leader的规则:在isr队列中存活为前提,按照AR中排在前面的优先。例如ar[1,0,2], isr [1,0,2],那么leader就会按照 1,0,2 的顺序轮询。而 AR 中的这个顺序kafka会进行打散,分摊kafka broker的压力。

当运行中的控制器突然宕机或意外终止时,Kafka 通过监听zookeeper能够快速地感知到,并立即启用备用控制器来代替之前失败的控制器。这个过程就被称为 Failover,该过程是自动完成的,无需你手动干预。

kafka 集群是如何选择 leader,你知道吗?

开始的时候,Broker 0 是控制器。当 Broker 0 宕机后,ZooKeeper 通过 Watch 机制感知到并删除了 /controller 临时节点。之后,所有存活的 Broker 开始竞选新的控制器身份。Broker 3最终赢得了选举,成功地在 ZooKeeper 上重建了 /controller 节点。之后,Broker 3 会从 ZooKeeper 中读取集群元数据信息,并初始化到自己的缓存中,后面就有Broker 3来接管选择Leader的功能了。

Leader 和 Follower 故障处理机制

如果topic分区的leaderfollower发生了故障,那么对于数据的一致性和可靠性会有什么样的影响呢?

kafka 集群是如何选择 leader,你知道吗?

  • LEO(Log End Offset):每个副本的最后一个offsetLEO就是最新的offset + 1。

  • HW(High Watermark):水位线,所有副本中最小的LEO ,消费者只能看到这个水位线左边的消息,从而保证数据的一致性。

上图所示,如果follower发生故障怎么办?

  • Follower发生故障后会被临时踢出ISR队列。

  • 这个期间LeaderFollower继续接收数据。

  • 待该Follower恢复后,Follower会读取本地磁盘记录的上次的HW,并将log文件高于HW的部分截取掉,从HW开始向Leader进行同步。

  • 等该FollowerLEO大于等于该PartitionHW,即Follower追上Leader之后,就可以重新加入 ISR 了。

如果leader发生故障怎么办?

  • Leader发生故障之后,会从ISR中选出一个新的Leader

  • 为保证多个副本之间的数据一致性,其余的Follower会先将各自的log文件高于HW的部分截掉,然后从新的Leader同步数据。

所以为了让kafka broker保证消息的可靠性和一致性,我们要做如下的配置:

  • 设置 生产者producer 的配置acks=all或者-1。leader 在返回确认或错误响应之前,会等待所有副本收到悄息,需要配合min.insync.replicas配置使用。这样就意味着leaderfollowerLEO对齐。

  • 设置topic 的配置replication.factor>=3副本大于 3 个,并且 min.insync.replicas>=2表示至少两个副本应答。

  • 设置broker配置unclean.leader.election.enable=false,默认也是 false,表示不对落后leader很多的follower也就是非ISR队列中的副本选择为Leader, 这样可以避免数据丢失和数据 不一致,但是可用性会降低。

Leader Partition 负载平衡

正常情况下,Kafka本身会自动把Leader Partition均匀分散在各个机器上,来保证每台机器的读写吞吐量都是均匀的。但是如果某些broker宕机,会导致 Leader Partition 过于集中在其他少部分几台broker上,这会导致少数几台broker的读写请求压力过高,其他宕机的 broker 重启之后都是follower partition,读写请求很低,造成集群负载不均衡。那么该如何负载平衡呢?

  1. 自动负载均衡

通过broker配置设置自动负载均衡。

  • auto.leader.rebalance.enable:默认是 true。 自动 Leader Partition 平衡。生产环境中,leader 重选举的代价比较大,可能会带来性能影响,建议设置为 false 关闭。

  • leader.imbalance.per.broker.percentage:默认是 10%。每个 broker 允许的不平衡的 leader的比率。如果每个 broker 超过了这个值,控制器会触发 leader 的平衡。

  • leader.imbalance.check.interval.seconds:默认值 300 秒。检查 leader 负载是否平衡的间隔时间。

  1. 手动负载均衡

  • 对所有topic进行负载均衡

./bin/kafka-preferred-replica-election.sh --zookeeper hadoop16:2181,hadoop17:2181,hadoop18:2181/kafka08

复制代码

  • 对指定topic负载均衡

cat topicPartitionList.json
{
 "partitions":
  [
    {"topic":"test.example","partition": "0"}
  ]
}

复制代码

./bin/kafka-preferred-replica-election.sh --zookeeper hadoop16:2181,hadoop17:2181,hadoop18:2181/kafka08 --path-to-json-file topicPartitionList.json

复制代码

kafka 的存储机制

kafka 消息最终会存储到磁盘文件中,那么是如何存储的呢?清理策略是什么呢?

kafka 集群是如何选择 leader,你知道吗?

一个topic分为多个partition,每个 partition 对应于一个log文件,为防止 log 文件过大导致数据定位效率低下,Kafka 采取了分片和索引机制,每个partition分为多个segment。每个segment包括:“.index”文件、“.log”文件和.timeindex等文件,Producer生产的数据会被不断追加到该 log 文件末端。

kafka 集群是如何选择 leader,你知道吗?

上图中 t1 即为一个topic的名称,而“t1-0/t1-1”则表明这个目录是 t1 这个topic的哪个partition

kafka 集群是如何选择 leader,你知道吗?

kafka 中的索引文件以稀疏索引(sparseindex)的方式构造消息的索引,如下图所示:

1.根据目标offset定位segment文件

2.找到小于等于目标offset的最大offset对应的索引项

3.定位到log文件

4.向下遍历找到目标Record

注意:index 为稀疏索引,大约每往log文件写入4kb数据,会往index文件写入一条索引。通过参数log.index.interval.bytes控制,默认4kb

那 kafka 中磁盘文件保存多久呢?

kafka 中默认的日志保存时间为 7 天,可以通过调整如下参数修改保存时间。

  • log.retention.hours,最低优先级小时,默认 7 天。

  • log.retention.minutes,分钟。

  • log.retention.ms,最高优先级毫秒。

  • log.retention.check.interval.ms,负责设置检查周期,默认 5 分钟。

kafka broker 重要参数

前面讲解了kafka broker中的核心机制,我们再来看下重要的配置参数。

首先来说下 kafka 服务端配置属性Update Mode的作用:

kafka 集群是如何选择 leader,你知道吗?

  • read-only。被标记为read-only 的参数和原来的参数行为一样,只有重启 Broker,才能令修改生效。

  • per-broker。被标记为 per-broker 的参数属于动态参数,修改它之后,无需重启就会在对应的 broker 上生效。

  • cluster-wide。被标记为 cluster-wide 的参数也属于动态参数,修改它之后,会在整个集群范围内生效,也就是说,对所有 broker 都生效。也可以为具体的 broker 修改cluster-wide 参数。

Broker 重要参数

kafka 集群是如何选择 leader,你知道吗?

总结

Kafka集群的分区多副本架构是 Kafka 可靠性保证的核心,把消息写入多个副本可以使 Kafka 在发生崩溃时仍能保证消息的持久性。本文围绕这样的核心架构讲解了其中的一些核心机制,包括 Leader 的选举、消息的存储机制等等。文章来源地址https://www.toymoban.com/news/detail-471763.html

到了这里,关于kafka 集群是如何选择 leader,你知道吗?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Kafka原理】分区的leader和follower

    在Kafka中,每个topic都可以配置多个分区以及多个副本。每个分区都有一个leader以及0个或者多个follower。在创建topic时,Kafka会将每个分区的leader均匀地分配在每个broker上。使用Kafka时,是感觉不到leader和follower存在的。 Kafka中的leader负责处理读写操作,而follower只是负责副本数

    2024年02月08日
    浏览(40)
  • 【项目实战】Kafka 的 Leader 选举和负载均衡

    👉 博主介绍 : 博主从事应用安全和大数据领域,有8年研发经验,5年面试官经验,Java技术专家,WEB架构师,阿里云专家博主,华为云云享专家,51CTO TOP红人 Java知识图谱点击链接: 体系化学习Java(Java面试专题) 💕💕 感兴趣的同学可以收藏关注下 , 不然下次找不到哟

    2024年02月16日
    浏览(38)
  • 【Unity每日一记】Unity不知道如何选择,移动方法,来瞧瞧

    👨‍💻个人主页 :@元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏 : unity每日一记 ⭐【软件设计师高频考点暴击】 ⭐【Unityc#专题篇】之c#系统化大礼包】 ⭐【unity数据持久化】数据管理类_PlayerPrfs ⭐【u

    2024年04月15日
    浏览(49)
  • Kafka学习--3、Kafka Broker、节点服役和退役、Kafka 副本、Leader 选举流程、故障处理

    1.1 Kafka Broker工作流程 1.1.1 Zookeeper储存的Kafka信息 (1)启动Zookeeper集群、再启动Kafka集群,然后启动Zookeeper客户端 (2)通过ls命令可以查看kafka相关信息。 1.1.2 Kafka Broker总体工作流程 1、模拟Kafka上下线,Zookeeper中数据变化 (1)查看/kafka/brokers/ids 路径上的节点。 (2)查看

    2024年02月10日
    浏览(37)
  • Kafka3.0.0版本——Leader故障处理细节原理

    三台服务器 原始服务器名称 原始服务器ip 节点 centos7虚拟机1 192.168.136.27 broker0 centos7虚拟机2 192.168.136.28 broker1 centos7虚拟机3 192.168.136.29 broker2 2.1、服务器基本信息 首先,分别有3台服务器分别为broker0、broker1、broker2,其中一台为leader,2台follower服务器。每台服务器已经接收到

    2024年02月11日
    浏览(34)
  • Kafka3.0.0版本——Leader Partition自动平衡

    正常情况下,Kafka 本身会自动把Leader Partition均匀分散在各个机器上 ,来保证每台机器的读写吞吐量都是均匀的。但是如果 某些broker宕机,会导致Leader Partition过于集中在其他少部分几台broker上 ,这会导致少数几台broker的读写请求压力过高,其他宕机的broker重启之后都是foll

    2024年02月11日
    浏览(42)
  • Kafka 和 Zookeeper 的 Leader 和 Follower 区别(选举&数据同步)

    》Client与Server通过NIO通信 》全局串行化所有的写操作 》保证同一客户端的指令被FIFO执行 》保证消息通知的FIFO (2)kafka 不同,只有leader 负责读写,follower只负责备份,如果leader宕机的话,Kafaka动态维护了一个同步状态的副本的集合(a set of in-sync replicas),简称ISR,ISR中有f+1个节

    2024年04月10日
    浏览(76)
  • kafka中topic的部分分区leader为none,怎样解决?

      (以Hadoop的topic为例) 进入Zookeeper客户端查看kafka存储的信息,/kafka/brokers/topics/hadoop/partitions/1/state get /kafka/brokers/topics/hadoop/partitions/1/state 查看到 {\\\"controller_epoch\\\":33,\\\"leader\\\":-1,\\\"version\\\":1,\\\"leader_epoch\\\":25,\\\"isr\\\":[3]}  leader为-1,固分区的leader为none 修改/kafka/brokers/topics/hadoop/partitions/

    2024年02月03日
    浏览(45)
  • 分布式 - 消息队列Kafka:Kafka 副本|AR|ISR|OSR|Leader|Follower|HW|LEO

    01. Kafka 复制 1. kafka 副本的分类 Kafka经常被描述成“一个分布式、分区、可复制的提交日志服务”。复制之所以这么重要,是因为它可以在个别节点失效时仍能保证Kafka的可用性和持久性。Kafka的数据保存在主题中,每个主题被分成若干个分区,每个分区可以有多个副本。副本

    2024年02月09日
    浏览(43)
  • Zookeeper 和 Kafka 工作原理及如何搭建 Zookeeper集群 + Kafka集群

    目录 1 Zookeeper 1.1 Zookeeper 定义 1.2 Zookeeper 工作机制 1.3 Zookeeper 特点 1.4 Zookeeper 数据结构 1.5 Zookeeper 应用场景 1.6 Zookeeper 选举机制 2 部署 Zookeeper 集群 2.1 安装前准备 2.2 安装 Zookeeper 3 Kafka 3.1 为什么需要消息队列(MQ) 3.2 使用消息队列的好处 3.3 消息队列的两种模式 3.4 Kafka 定义

    2024年02月08日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包