手写数字识别及python实现

这篇具有很好参考价值的文章主要介绍了手写数字识别及python实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1、总体流程

2、代码实现

下载数据集

确定激活函数、损失函数、计算梯度函数等

神经网络的搭建

模型的训练与验证 

测试模型的泛化能力


1、总体流程

手写数字识别及python实现

step1:下载数据集、读取数据
step2:搭建神经网络(确定输出层、隐藏层(层数)、输出层的结构)
step3:初始化偏置和权重
step4:设置损失函数、激活函数
step5:设置超参数
step6:神经网络训练数据(通过误差反向传播求导、学习)
step7:测试验证数据集(确定Loss、精确度)
step8:测试模型的泛化能力(输入自己手写的数字进行判断)

2、代码实现

下载数据集

# coding: utf-8
try:
    import urllib.request
except ImportError:
    raise ImportError('You should use Python 3.x')
import os.path
import gzip
import pickle
import os
import numpy as np


url_base = 'http://yann.lecun.com/exdb/mnist/'
key_file = {
    'train_img':'train-images-idx3-ubyte.gz',
    'train_label':'train-labels-idx1-ubyte.gz',
    'test_img':'t10k-images-idx3-ubyte.gz',
    'test_label':'t10k-labels-idx1-ubyte.gz'
}

dataset_dir = os.path.abspath('.')
save_file = dataset_dir + "/mnist.pkl"

train_num = 60000
test_num = 10000
img_dim = (1, 28, 28)
img_size = 784


def _download(file_name):
    file_path = dataset_dir + "/" + file_name
    
    if os.path.exists(file_path):
        return

    print("Downloading " + file_name + " ... ")
    urllib.request.urlretrieve(url_base + file_name, file_path)
    print("Done")
    
def download_mnist():
    for v in key_file.values():
       _download(v)
        
def _load_label(file_name):
    file_path = dataset_dir + "/" + file_name
    
    print("Converting " + file_name + " to NumPy Array ...")
    with gzip.open(file_path, 'rb') as f:
            labels = np.frombuffer(f.read(), np.uint8, offset=8)
    print("Done")
    
    return labels

def _load_img(file_name):
    file_path = dataset_dir + "/" + file_name
    
    print("Converting " + file_name + " to NumPy Array ...")    
    with gzip.open(file_path, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=16)
    data = data.reshape(-1, img_size)
    print("Done")
    
    return data
    
def _convert_numpy():
    dataset = {}
    dataset['train_img'] =  _load_img(key_file['train_img'])
    dataset['train_label'] = _load_label(key_file['train_label'])    
    dataset['test_img'] = _load_img(key_file['test_img'])
    dataset['test_label'] = _load_label(key_file['test_label'])
    
    return dataset

def init_mnist():
    download_mnist()
    dataset = _convert_numpy()
    print("Creating pickle file ...")
    with open(save_file, 'wb') as f:
        pickle.dump(dataset, f, -1)
    print("Done!")

def _change_one_hot_label(X):
    T = np.zeros((X.size, 10))
    for idx, row in enumerate(T):
        row[X[idx]] = 1
        
    return T
    

def load_mnist(normalize=False, flatten=True, one_hot_label=False):
    """读入MNIST数据集
    
    Parameters
    ----------
    normalize : 将图像的像素值正规化为0.0~1.0
    one_hot_label : 
        one_hot_label为True的情况下,标签作为one-hot数组返回
        one-hot数组是指[0,0,1,0,0,0,0,0,0,0]这样的数组
    flatten : 是否将图像展开为一维数组
    
    Returns
    -------
    (训练图像, 训练标签), (测试图像, 测试标签)
    """
    if not os.path.exists(save_file):
        init_mnist()
        
    with open(save_file, 'rb') as f:
        dataset = pickle.load(f)
    
    if normalize:
        for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].astype(np.float32)
            dataset[key] /= 255.0
            
    if one_hot_label:
        dataset['train_label'] = _change_one_hot_label(dataset['train_label'])
        dataset['test_label'] = _change_one_hot_label(dataset['test_label'])
    
    if not flatten:
         for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].reshape(-1, 1, 28, 28)

    return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label']) 


if __name__ == '__main__':
    init_mnist()

确定激活函数、损失函数、计算梯度函数等

##激活函数
def sigmoid(x):
    return 1/(1+np.exp(-x))
def softmax(x):
    if x.ndim == 2:
        x = x.T
        x = x - np.max(x, axis=0)
        y = np.exp(x) / np.sum(np.exp(x), axis=0)
        return y.T 

    x = x - np.max(x) # 溢出对策
    return np.exp(x) / np.sum(np.exp(x))

def cross_entropy_error(y, t):
    if y.ndim == 1:
        t = t.reshape(1, t.size)
        y = y.reshape(1, y.size)
        
    # 监督数据是one-hot-vector的情况下,转换为正确解标签的索引
    if t.size == y.size:
        t = t.argmax(axis=1)
             
    batch_size = y.shape[0]
    return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size

# 计算梯度
def numerical_gradient(f, x):
    h = 1e-4 # 0.0001
    grad = np.zeros_like(x)
    
    it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
    while not it.finished:
        idx = it.multi_index
        tmp_val = x[idx]
        x[idx] = float(tmp_val) + h
        fxh1 = f(x) # f(x+h)
        
        x[idx] = tmp_val - h 
        fxh2 = f(x) # f(x-h)
        grad[idx] = (fxh1 - fxh2) / (2*h)
        
        x[idx] = tmp_val # 还原值
        it.iternext()   
        
    return grad

def sigmoid_grad(x):
    return (1.0 - sigmoid(x)) * sigmoid(x)

神经网络的搭建

class TwoLayerNet:

    def __init__(self, input_size, hidden_size, output_size, weight_init_std=0.01):
        # 初始化权重
        self.params = {}
        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size)
        self.params['b2'] = np.zeros(output_size)

    def predict(self, x):
        W1, W2 = self.params['W1'], self.params['W2']
        b1, b2 = self.params['b1'], self.params['b2']
    
        a1 = np.dot(x, W1) + b1
        z1 = sigmoid(a1)
        a2 = np.dot(z1, W2) + b2
        y = softmax(a2)
        
        return y
        
    # x:输入数据, t:监督数据
    def loss(self, x, t):
        y = self.predict(x)
        
        return cross_entropy_error(y, t)
    
    def accuracy(self, x, t):
        y = self.predict(x)
        y = np.argmax(y, axis=1)
        t = np.argmax(t, axis=1)
        
        accuracy = np.sum(y == t) / float(x.shape[0])
        return accuracy
        
    # x:输入数据, t:监督数据
    def numerical_gradient(self, x, t):
        loss_W = lambda W: self.loss(x, t)
        
        grads = {}
        grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
        grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
        grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
        grads['b2'] = numerical_gradient(loss_W, self.params['b2'])
        
        return grads
        
    def gradient(self, x, t):
        W1, W2 = self.params['W1'], self.params['W2']
        b1, b2 = self.params['b1'], self.params['b2']
        grads = {}
        
        batch_num = x.shape[0]
        
        # forward
        a1 = np.dot(x, W1) + b1
        z1 = sigmoid(a1)
        a2 = np.dot(z1, W2) + b2
        y = softmax(a2)
        
        # backward
        dy = (y - t) / batch_num
        grads['W2'] = np.dot(z1.T, dy)
        grads['b2'] = np.sum(dy, axis=0)
        
        da1 = np.dot(dy, W2.T)
        dz1 = sigmoid_grad(a1) * da1
        grads['W1'] = np.dot(x.T, dz1)
        grads['b1'] = np.sum(dz1, axis=0)

        return grads

模型的训练与验证 

# 读入数据
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True,normalize=True, one_hot_label=True)

network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)

iters_num = 10000
train_size = x_train.shape[0]
batch_size = 100
learning_rate = 0.1

train_loss_list = []
train_acc_list = []
test_acc_list = []

iter_per_epoch = max(train_size / batch_size, 1)

for i in range(iters_num):
    batch_mask = np.random.choice(train_size, batch_size)
    x_batch = x_train[batch_mask]
    t_batch = t_train[batch_mask]
    
    # 梯度
    #grad = network.numerical_gradient(x_batch, t_batch)
    grad = network.gradient(x_batch, t_batch)
    
    # 更新
    for key in ('W1', 'b1', 'W2', 'b2'):
        network.params[key] -= learning_rate * grad[key]
    
    loss = network.loss(x_batch, t_batch)
    train_loss_list.append(loss)
    
    if i % iter_per_epoch == 0:
        train_acc = network.accuracy(x_train, t_train)
        test_acc = network.accuracy(x_test, t_test)
        train_acc_list.append(train_acc)
        test_acc_list.append(test_acc)
        print(train_acc, test_acc)

## 验证
import matplotlib.pyplot as plt
plt.subplot(1,2,1)
plt.plot(np.arange(0,10000),train_loss_list)
plt.title('Loss')
plt.subplot(1,2,2)
plt.plot(np.arange(0,np.size(train_acc_list)),train_acc_list,np.arange(0,np.size(test_acc_list)),test_acc_list)
plt.title('accuracy')
plt.show()

 训练过程中的误差和精确度变化:
 

手写数字识别及python实现

测试模型的泛化能力

import cv2
def img_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    

def predict_img_num(filename, img_width, img_height, threshold, kernel_size):
    img_original = cv2.imread(filename)
    img = cv2.resize(img_original,(img_width,img_width),fx=1,fy=1)

    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    ret, thresh2 = cv2.threshold(img_gray, threshold, 255, cv2.THRESH_BINARY)

    kernel = np.ones(kernel_size,np.uint8) 
    thresh2 = cv2.erode(thresh2,kernel,iterations = 1)

    ret, thresh2 = cv2.threshold(thresh2, threshold, 255, cv2.THRESH_BINARY_INV)
    print(thresh2.shape)

    img_show('test',thresh2)
    thresh2 = thresh2.reshape(1,img_width*img_width)
    a = network.predict(thresh2)
    label = np.argmax(np.array(a))
    
    return label

predict_img_num('8.jpg',28,28,127,(3,3))

输入手写图片8:

手写数字识别及python实现

输出结果:手写数字识别及python实现

 同样你也可以输入一些你自己手写的数字,来测试模型的泛化能力文章来源地址https://www.toymoban.com/news/detail-471791.html

到了这里,关于手写数字识别及python实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python代码识别minist手写数字【附pdf】

    一、概述 对于人类而言,要识别图片中的数字是一件很容易的事情,但是,如何让机器学会理解图片上的数字,这似乎并不容易。那么,能否找出一个函数(模型),通过输入相关的信息,最终得到期望的结果呢? 二、python代码实现中涉及的输入输出内容: 输入:mnist数据

    2024年04月14日
    浏览(40)
  • 深度学习实验:Softmax实现手写数字识别

    文章相关知识点:​​​​​​​AI遮天传 DL-回归与分类_老师我作业忘带了的博客-CSDN博客   MNIST数据集   MNIST手写数字数据集是机器学习领域中广泛使用的图像分类数据集。它包含60,000个训练样本和10,000个测试样本。这些数字已进行尺寸规格化,并在固定尺寸的图像中居中

    2023年04月08日
    浏览(41)
  • Matlab搭建AlexNet实现手写数字识别

    个人博客地址 Matlab 2020a Windows10 使用Matlab对MNIST数据集进行预处理,搭建卷积神经网络进行训练,实现识别手写数字的任务。在训练过程中,每隔30个batch输出一次模型在验证集上的准确率和损失值。在训练结束后会输出验证集中每个数字的真实值、网络预测值和判定概率,并

    2024年02月05日
    浏览(41)
  • python与深度学习(一):ANN和手写数字识别

    神经网络是学者通过对生物神经元的研究,提出了模拟生物神经元机制的人工神经网络的数学模型,生物神经元的模型抽象为如图所示的数学结构。 神经元输入向量𝒙 = [𝑥1,   𝑥2, 𝑥3, … , 𝑥𝑛]T,经过函数映射:𝑓: 𝒙 → 𝑦后得到输出𝑦。 考虑一种简化的情况,

    2024年02月16日
    浏览(44)
  • FPGA实现mnist手写数字识别(软件部分)

    使用的环境:tf1.12,具体配置见here: 首先打开环境tf1.12,,再安装以下的包: opencv 在这里下载“linux-64/opencv3-3.1.0-py36_0.tar.bz2”,通过共享文件夹copy到download文件夹中,在文件夹下打开终端,输入以下命令进行安装: matplotlib(时刻注意是py36) Pillow(貌似不用了,上面已经安

    2023年04月15日
    浏览(80)
  • python与深度学习(六):CNN和手写数字识别二

    本篇文章是对上篇文章训练的模型进行测试。首先是将训练好的模型进行重新加载,然后采用opencv对图片进行加载,最后将加载好的图片输送给模型并且显示结果。 在这里导入需要的第三方库如cv2,如果没有,则需要自行下载。 把MNIST数据集进行加载,并且把训练好的模型也

    2024年02月15日
    浏览(36)
  • 用PyTorch实现MNIST手写数字识别(最新,非常详细)

    本文基于 PyTorch 框架,采用 CNN卷积神经网络 实现 MNIST 手写数字识别,仅在 CPU 上运行。 已分别实现使用Linear纯线性层、CNN卷积神经网络、Inception网络、和Residual残差网络四种结构对MNIST数据集进行手写数字识别,并对其识别准确率进行比较分析。(另外三种还未发布) 看完

    2024年02月06日
    浏览(37)
  • CNN卷积神经网络实现手写数字识别(基于tensorflow)

    卷积网络的 核心思想 是将: 局部感受野 权值共享(或者权值复制) 时间或空间亚采样 卷积神经网络 (Convolutional Neural Networks,简称: CNN )是深度学习当中一个非常重要的神经网络结构。它主要用于用在 图像图片处理 , 视频处理 , 音频处理 以及 自然语言处理 等等。

    2024年02月11日
    浏览(43)
  • 基于python的Keras库构建的深度神经网络手写数字识别模型

    目录 模型训练过程 ①导入所需的库 ②加载手写体数据集,将数据集分为训练集和测试集 ③数据预处理 ④构建模型 ⑤编译模型 ⑥训练模型 ⑦使用测试集进行验证 ⑧输出模型准确率和时间消耗 完整代码如下: 模型训练过程 使用到的数据集为IMDB电影评论情感分类数据集,该

    2024年02月09日
    浏览(44)
  • 深度学习:使用卷积神经网络CNN实现MNIST手写数字识别

    本项目基于pytorch构建了一个深度学习神经网络,网络包含卷积层、池化层、全连接层,通过此网络实现对MINST数据集手写数字的识别,通过本项目代码,从原理上理解手写数字识别的全过程,包括反向传播,梯度下降等。 卷积神经网络是一种多层、前馈型神经网络。从功能上

    2024年02月13日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包