通信原理与MATLAB(八):2PSK的调制解调

这篇具有很好参考价值的文章主要介绍了通信原理与MATLAB(八):2PSK的调制解调。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 2PSK的调制原理

2PSK调制原理如下图所示,和2ASK调制原理相似,只不过基带码元是双极性不归零码,基带码元d(t)和高频载波相乘实现2PSK信号的调制。
通信原理与MATLAB(八):2PSK的调制解调
波形图如下图所示
通信原理与MATLAB(八):2PSK的调制解调

2. 2PSK的解调原理

2PSK的解调原理如下图所示,2PSK信号经过信道传输之后,再和载波相乘,然后经过低通滤波后抽样判决恢复出原始基带码元信号。
通信原理与MATLAB(八):2PSK的调制解调

3. 2PSK的代码

clear all;                  % 清除所有变量
close all;                  % 关闭所有窗口
clc;                        % 清屏
%% 基本参数
M=10;                       % 产生码元数    
L=100;                      % 每码元复制L次,每个码元采样次数
Ts=0.001;                   % 每个码元的宽度,即码元的持续时间
Rb=1/Ts;                    % 码元速率1K
dt=Ts/L;                    % 采样间隔
TotalT=M*Ts;                % 总时间
t=0:dt:TotalT-dt;           % 时间
Fs=1/dt;                    % 采样间隔的倒数即采样频率

%% 产生单极性波形
wave=randi([0,1],1,M);      % 产生二进制随机码,M为码元个数
fz=ones(1,L);               % 定义复制的次数L,L为每码元的采样点数
x1=wave(fz,:);              % 将原来wave的第一行复制L次,称为L*M的矩阵
jidai=reshape(x1,1,L*M);    % 产生单极性不归零矩形脉冲波形,将刚得到的L*M矩阵,按列重新排列形成1*(L*M)的矩阵

%% 单极性变为双极性
% 基带信号变为双极性即jidai为1的时候,jidai为1;jidai为0的时候,jidai为-1
for n=1:length(jidai)
    if jidai(n)==1
        jidai(n)=1;
    else
        jidai(n)=-1;
    end
end
%% 2PSK调制
fc=2000;                    % 载波频率2kHz       
zb=sin(2*pi*fc*t);          % 载波
psk=jidai.*zb;              % 2PSK的模拟调制 
figure(1);                  % 绘制第1幅图
subplot(211);               % 窗口分割成2*1的,当前是第1个子图 
plot(t,jidai,'LineWidth',2);% 绘制基带码元波形,线宽为2
title('基带信号波形');      % 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
axis([0,TotalT,-1.1,1.1])   % 坐标范围限制

subplot(212)                % 窗口分割成2*1的,当前是第2个子图 
plot(t,psk,'LineWidth',2);  % 绘制PASK的波形 
title('2PSK信号波形')   % 标题
axis([0,TotalT,-1.1,1.1]);  % 坐标范围限制
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
%% 信号经过高斯白噪声信道
tz=awgn(psk,15);            % 信号psk中加入白噪声,信噪比为SNR=15dB
figure(2);                  % 绘制第2幅图
subplot(211);               % 窗口分割成2*1的,当前是第1个子图 
plot(t,tz,'LineWidth',2);   % 绘制2PSK信号加入白噪声的波形
axis([0,TotalT,-1.5,1.5]);  % 坐标范围设置
title('通过高斯白噪声信道后的信号');% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
%% 解调部分
tz=tz.*zb;                  % 相干解调,乘以相干载波
subplot(212)                % 窗口分割成2*1的,当前是第2个子图 
plot(t,tz,'LineWidth',1)    % 绘制乘以相干载波后的信号
axis([0,TotalT,-1.5,1.5]);  % 设置坐标范围
title("乘以相干载波后的信号")% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
%% 加噪信号经过滤波器
% 低通滤波器设计
fp=2*Rb;                    % 低通滤波器截止频率,乘以2是因为下面要将模拟频率转换成数字频率wp=Rb/(Fs/2)
b=fir1(30, fp/Fs, boxcar(31));% 生成fir滤波器系统函数中分子多项式的系数
% fir1函数三个参数分别是阶数,数字截止频率,滤波器类型
% 这里是生成了30(31个抽头系数)的矩形窗滤波器
[h,w]=freqz(b, 1,512);      % 生成fir滤波器的频率响应
% freqz函数的三个参数分别是滤波器系统函数的分子多项式的系数,分母多项式的系数(fir滤波器分母系数为1)和采样点数(默认)512
lvbo=fftfilt(b,tz);         % 对信号进行滤波,tz是等待滤波的信号,b是fir滤波器的系统函数的分子多项式系数
figure(3);                  % 绘制第3幅图  
subplot(311);               % 窗口分割成3*1的,当前是第1个子图 
plot(w/pi*Fs/2,20*log(abs(h)),'LineWidth',2); % 绘制滤波器的幅频响应
title('低通滤波器的频谱');  % 标题
xlabel('频率/Hz');          % x轴标签
ylabel('幅度/dB');          % y轴标签

subplot(312)                % 窗口分割成3*1的,当前是第2个子图 
plot(t,lvbo,'LineWidth',2); % 绘制经过低通滤波器后的信号
axis([0,TotalT,-1.1,1.1]);  % 设置坐标范围
title("经过低通滤波器后的信号");% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签

%% 抽样判决
k=0;                        % 设置抽样限值
pdst=1*(lvbo>0);            % 滤波后的向量的每个元素和0进行比较,大于01,否则为0
subplot(313)                % 窗口分割成2*1的,当前是第3个子图 
plot(t,pdst,'LineWidth',2)  % 画出经过抽样判决后的信号
axis([0,TotalT,-0.1,1.1]);  % 设置坐标范用
title("经过抽样判决后的信号")% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签

%% 绘制频谱
%% 2PSK信号频谱
T=t(end);                   % 时间
df=1/T;                     % 频谱分辨率
N=length(psk);              % 采样长度
f=(-N/2:N/2-1)*df;          % 频率范围
sf=fftshift(abs(fft(psk))); %2PSK信号采用快速傅里叶变换并将0-fs频谱移动到-fs/2-fs/2
figure(4)                   % 绘制第4幅图
subplot(211)                % 窗口分割成2*1的,当前是第1个子图 
plot(f,sf,'LineWidth',2)    % 绘制调制信号频谱
title("2PSK信号频谱")       % 标题
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

%% 信源频谱
mf=fftshift(abs(fft(jidai)));%对信源信号采用快速傅里叶变换并移到矩阵中心
subplot(212);               % 窗口分割成2*1的,当前是第2个子图 
plot(f,mf,'LineWidth',2);   % 绘制信源频谱波形
title("基带信号频谱");      % 标题
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

%% 乘以相干载波后的频谱
mmf=fftshift(abs(fft(tz))); % 对相干载波信号采用快速傅里叶变换并移到矩阵中心
figure(5)                   % 绘制第5幅图
subplot(211);               % 窗口分割成2*1的,当前是第1个子图 
plot(f,mmf,'LineWidth',2)   % 画出乘以相干载波后的频谱
title("乘以相干载波后的频谱")
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

%% 经过低通滤波后的频谱
dmf=fftshift(abs(fft(lvbo)));%对低通滤波信号采用快速傅里叶变换并移到矩阵中心
subplot(212);               % 窗口分割成2*1的,当前是第2个子图 
plot(f,dmf,'LineWidth',2)   % 画出经过低通滤波后的频谱
title("经过低通滤波后的频谱");
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

4. 结果图

结果图中2PSK信号是经过信道,加了高斯白噪声的。
如果不想加噪声,把下面这行代码注释即可。

tz=awgn(psk,15);            % 信号psk中加入白噪声,信噪比为SNR=15dB

通信原理与MATLAB(八):2PSK的调制解调
通信原理与MATLAB(八):2PSK的调制解调
通信原理与MATLAB(八):2PSK的调制解调
通信原理与MATLAB(八):2PSK的调制解调
通信原理与MATLAB(八):2PSK的调制解调

5. 特点

抗干扰能力强,但是抗多径效应差,且有反相工作现象。

6. 改进代码

改进的代码在码元中间时刻进行抽样判决。
BPSK的改进代码

clear all;                  % 清除所有变量
close all;                  % 关闭所有窗口
clc;                        % 清屏
%% 基本参数
M=10;                       % 产生码元数    
L=100;                      % 每码元复制L次,每个码元采样次数
Ts=0.001;                   % 每个码元的宽度,即码元的持续时间
Rb=1/Ts;                    % 码元速率1K
dt=Ts/L;                    % 采样间隔
TotalT=M*Ts;                % 总时间
t=0:dt:TotalT-dt;           % 时间
Fs=1/dt;                    % 采样间隔的倒数即采样频率

%% 产生单极性波形
wave=randi([0,1],1,M);      % 产生二进制随机码,M为码元个数
fz=ones(1,L);               % 定义复制的次数L,L为每码元的采样点数
x1=wave(fz,:);              % 将原来wave的第一行复制L次,称为L*M的矩阵
jidai=reshape(x1,1,L*M);    % 产生单极性不归零矩形脉冲波形,将刚得到的L*M矩阵,按列重新排列形成1*(L*M)的矩阵

%% 单极性变为双极性
% 基带信号变为双极性即jidai为1的时候,jidai为1;jidai为0的时候,jidai为-1
for n=1:length(jidai)
    if jidai(n)==1
        jidai(n)=1;
    else
        jidai(n)=-1;
    end
end
%% 2PSK调制
fc=2000;                    % 载波频率2kHz       
zb=sin(2*pi*fc*t);          % 载波
psk=jidai.*zb;              % 2PSK的模拟调制 
figure(1);                  % 绘制第1幅图
subplot(211);               % 窗口分割成2*1的,当前是第1个子图 
plot(t,jidai,'LineWidth',2);% 绘制基带码元波形,线宽为2
title('基带信号波形');      % 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
axis([0,TotalT,-1.1,1.1])   % 坐标范围限制

subplot(212)                % 窗口分割成2*1的,当前是第2个子图 
plot(t,psk,'LineWidth',2);  % 绘制PASK的波形 
title('2PSK信号波形')   % 标题
axis([0,TotalT,-1.1,1.1]);  % 坐标范围限制
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
%% 信号经过高斯白噪声信道
tz=awgn(psk,15);            % 信号psk中加入白噪声,信噪比为SNR=15dB
figure(2);                  % 绘制第2幅图
subplot(211);               % 窗口分割成2*1的,当前是第1个子图 
plot(t,tz,'LineWidth',2);   % 绘制2PSK信号加入白噪声的波形
axis([0,TotalT,-1.5,1.5]);  % 坐标范围设置
title('通过高斯白噪声信道后的信号');% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
%% 解调部分
tz=tz.*zb;                  % 相干解调,乘以相干载波
subplot(212)                % 窗口分割成2*1的,当前是第2个子图 
plot(t,tz,'LineWidth',1)    % 绘制乘以相干载波后的信号
axis([0,TotalT,-1.5,1.5]);  % 设置坐标范围
title("乘以相干载波后的信号")% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
%% 加噪信号经过滤波器
% 低通滤波器设计
fp=2*Rb;                    % 低通滤波器截止频率,乘以2是因为下面要将模拟频率转换成数字频率wp=Rb/(Fs/2)
b=fir1(30, fp/Fs, boxcar(31));% 生成fir滤波器系统函数中分子多项式的系数
% fir1函数三个参数分别是阶数,数字截止频率,滤波器类型
% 这里是生成了30(31个抽头系数)的矩形窗滤波器
[h,w]=freqz(b, 1,512);      % 生成fir滤波器的频率响应
% freqz函数的三个参数分别是滤波器系统函数的分子多项式的系数,分母多项式的系数(fir滤波器分母系数为1)和采样点数(默认)512
lvbo=fftfilt(b,tz);         % 对信号进行滤波,tz是等待滤波的信号,b是fir滤波器的系统函数的分子多项式系数
figure(3);                  % 绘制第3幅图  
subplot(311);               % 窗口分割成3*1的,当前是第1个子图 
plot(w/pi*Fs/2,20*log(abs(h)),'LineWidth',2); % 绘制滤波器的幅频响应
title('低通滤波器的频谱');  % 标题
xlabel('频率/Hz');          % x轴标签
ylabel('幅度/dB');          % y轴标签

subplot(312)                % 窗口分割成3*1的,当前是第2个子图 
plot(t,lvbo,'LineWidth',2); % 绘制经过低通滤波器后的信号
axis([0,TotalT,-1.1,1.1]);  % 设置坐标范围
title("经过低通滤波器后的信号");% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签

%% 抽样判决
k=0;                        % 设置抽样限值
pdst=1*(lvbo>0);            % 滤波后的向量的每个元素和0进行比较,大于01,否则为0
% 取码元中间时刻值为判决值
panjue=[];

for j=(L/2):L:(L*M)
    if pdst(j)>0
        panjue=[panjue,1];
    else
        panjue=[panjue,0];
    end
end
x2=panjue(fz,:);              % 将原来panjue的第一行复制L次,称为L*M的矩阵
panjue_zong=reshape(x2,1,L*M);% 将刚得到的L*M矩阵,按列重新排列形成1*(L*M)的矩阵

subplot(313)                % 窗口分割成2*1的,当前是第3个子图 
plot(t,panjue_zong,'LineWidth',2)  % 画出经过抽样判决后的信号
axis([0,TotalT,-0.1,1.1]);  % 设置坐标范用
title("经过抽样判决后的信号")% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签

%% 绘制频谱
%% 2PSK信号频谱
T=t(end);                   % 时间
df=1/T;                     % 频谱分辨率
N=length(psk);              % 采样长度
f=(-N/2:N/2-1)*df;          % 频率范围
sf=fftshift(abs(fft(psk))); %2PSK信号采用快速傅里叶变换并将0-fs频谱移动到-fs/2-fs/2
figure(4)                   % 绘制第4幅图
subplot(211)                % 窗口分割成2*1的,当前是第1个子图 
plot(f,sf,'LineWidth',2)    % 绘制调制信号频谱
title("2PSK信号频谱")       % 标题
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

%% 信源频谱
mf=fftshift(abs(fft(jidai)));%对信源信号采用快速傅里叶变换并移到矩阵中心
subplot(212);               % 窗口分割成2*1的,当前是第2个子图 
plot(f,mf,'LineWidth',2);   % 绘制信源频谱波形
title("基带信号频谱");      % 标题
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

%% 乘以相干载波后的频谱
mmf=fftshift(abs(fft(tz))); % 对相干载波信号采用快速傅里叶变换并移到矩阵中心
figure(5)                   % 绘制第5幅图
subplot(211);               % 窗口分割成2*1的,当前是第1个子图 
plot(f,mmf,'LineWidth',2)   % 画出乘以相干载波后的频谱
title("乘以相干载波后的频谱")
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

%% 经过低通滤波后的频谱
dmf=fftshift(abs(fft(lvbo)));%对低通滤波信号采用快速傅里叶变换并移到矩阵中心
subplot(212);               % 窗口分割成2*1的,当前是第2个子图 
plot(f,dmf,'LineWidth',2)   % 画出经过低通滤波后的频谱
title("经过低通滤波后的频谱");
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

7. BPSK的误码率曲线

BPSK的误码率曲线可以通过此链接获取BPSK的误码率曲线文章来源地址https://www.toymoban.com/news/detail-472255.html

到了这里,关于通信原理与MATLAB(八):2PSK的调制解调的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 通信原理与MATLAB(一):AM的调制解调

    AM的调制原理如下图所示,基带信号m(t)和直流量A0相加,然后和高频载波相乘实现AM信号的调制。 AM的解调原理如下图所示,AM信号经过信道传输之后,再和载波相乘,然后经过低通滤波,隔直流之后恢复出原始基带信号。 AM.m文件,主文件 T2F.m文件,FFT功能 F2T.m文件,IFFT功能

    2023年04月08日
    浏览(51)
  • 通信原理与MATLAB(十二):MSK的调制解调

    MSK调制原理如下图所示,基带码元先差分编码,然后经过串并转换分成I、Q两路,再与对应的载波相乘,然后再相加完成MSK的调制。 其中注意:I、Q两路码元分别是差分编码后的相对码的奇数和偶数位置上的码元,I路对应于奇数,Q路对应于偶数。而pk是I路码元,但是其码元宽

    2024年02月12日
    浏览(44)
  • 通信原理与MATLAB(十):QPSK的调制解调

    QPSK调制原理如下图所示,QPSK相当于两个正交的BPSK相加而成。其调制原理是将基带码元分成I、Q两路,I路是原始基带码元的奇数位置码元,Q路是原始基带码元的偶数位置码元,然后两条支路分别和对应的载波相乘实现BPSK的调制,然后将两条支路相加实现QPSK的调制。 QPSK的解

    2024年02月06日
    浏览(55)
  • 通信原理与MATLAB(七):2FSK的调制解调

    2FSK调制原理如下图所示,基带码元d(t)中码元为1时,波形为频率为f1的高频载波;基带码元d(t)中码元为0时,波形为频率为f2的高频载波实现2FSK信号的调制,即基带码元和f1的高频正弦波相乘生成2ASK,基带码元的反码和f2的高频正弦波相乘生成第二个2ASK,两个2ASK相加得到2FSK。

    2024年02月09日
    浏览(37)
  • 通信原理与MATLAB(六):2ASK的调制解调

    2ASK调制原理如下图所示,基带码元d(t)和高频载波相乘实现2ASK信号的调制。 波形图如下图所示 2ASK的解调原理如下图所示,2ASK信号经过信道传输之后,再和载波相乘,然后经过低通滤波后抽样判决恢复出原始基带码元信号。 结果图中2ASK信号是经过信道,加了高斯白噪声的。

    2024年02月10日
    浏览(43)
  • 【通信原理(含matlab程序)】实验二:FM的调制和解调

    💥💥💞💞欢迎来到本博客❤️❤️💥💥 本人持续分享更多关于电子通信专业内容以及嵌入式和单片机的知识,如果大家喜欢,别忘点个赞加个关注哦,让我们一起共同进步~ 理解FM基本原理、FM信号时域和频域主要特点; 理解FM信号调制和解调的实现方法; 掌握matlab程序

    2024年02月08日
    浏览(45)
  • 《移动通信原理与应用》——QPSK调制解调仿真

    目录 一、QPSK调制与解调流程图: 二、仿真运行结果:  三、MATLAB仿真代码:  QPSK调制流程图: QPSK解调流程图:    1、Figure1:为发送端比特流情况图:             从Figure1看出发送端发送的比特流信息…[ak,bk]…情况:奇数进入I路,偶数进入Q路。比特进入I路与Q路情况如

    2024年01月23日
    浏览(42)
  • QPSK调制解调原理及MATLAB仿真

    ⭐️作者简介: 小瑞同学 ,主要学习 FPGA、信号处理、通信 等。 🍎个人主页:小瑞同学的博客主页 🌻个人信条:越努力,越幸运! ⏰日期:2023.11.16 📖文章内容概述:简单介绍了 QPSK 的基本原理和具体流程,并使用 MATLAB 进行了仿真分析。 👻 QPSK(正交相移键控) ,是

    2024年04月15日
    浏览(41)
  • m基于FPGA的8PSK调制解调系统verilog实现,包含testbench测试文件

    目录 1.算法仿真效果 2.算法涉及理论知识概要 2.1 8PSK调制原理 2.2 基于FPGA的8PSK调制解调器设计和实现 3.Verilog核心程序 4.完整算法代码文件获得 vivado仿真结果如下: 借助matlab看8PSK的星座图:         随着通信技术的不断发展,相位调制技术因其高频谱效率和抗干扰能力而广

    2024年02月05日
    浏览(48)
  • 利用matlab实现AM调制解调

    基本原理 幅度调制(AM)是用调制信号去控制高频载波的振幅,使之随调制信号作线性变化的过程。     上图给出了AM调制解调的原理模型,从图中可知发送信号m(t)和直流分量A 0 叠 加 后乘以高频载波cos(w c t)后即可形成AM调制信号。 具体时域波形为   对应的频谱波形为   在解

    2023年04月08日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包