java实现国密SM4的加密和解密方式(即时通讯的消息对话加密采用SM2还是SM4)

这篇具有很好参考价值的文章主要介绍了java实现国密SM4的加密和解密方式(即时通讯的消息对话加密采用SM2还是SM4)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.对于即时通讯的消息对话加密采用SM2还是SM4更合适?

对于即时通讯的消息对话加密,建议采用SM4对称加密算法,而不是SM2非对称加密算法。

SM2主要用于数字签名和密钥交换,其加密速度比SM4慢,而且SM2不太适合对长消息进行加密,因为它只能对比较短的数据块进行加密,这对于即时通讯中的大量数据传输是不够高效的。

相比之下,SM4对称加密算法可以更好地适应即时通讯的消息对话加密需求。SM4具有较高的安全性和较快的加解密速度,适合用于加密较长的消息和文件,并且能够适应即时通讯中快速传输和处理数据的要求。同时,SM4也具有较好的自主可控性,适合用于保护国家机密和重要数据的安全。

因此,综合考虑,建议采用SM4对称加密算法来实现即时通讯的消息对话加密。

2.SM2和SM4的优缺点对比?

SM2和SM4都是中国密码领域的国家密码算法,但是它们的设计目的和使用场景不同,因此它们的优缺点也有所不同。

SM2是一种非对称加密算法,主要用于数字签名和密钥交换。相对于其他非对称加密算法,如RSA和ECC,SM2具有以下优点:

优点:

安全性高:SM2采用的是椭圆曲线加密算法,比RSA和ECC更难破解。

效率高:SM2的加解密速度较快,尤其是在小设备上表现优异,因为SM2使用的参数相对较小,计算量相对较少。

自主可控:SM2是由中国密码学专家自主设计的,没有涉及外部专家,因此具有自主可控性。

缺点:

兼容性差:SM2与其他非对称加密算法不兼容,因此不能与其他算法进行密钥交换。

适用性受限:SM2适用于数字签名和密钥交换,但不适用于对称加密和身份认证等领域。

SM4是一种对称加密算法,主要用于数据加密和保护。相对于其他对称加密算法,如AES和DES,SM4具有以下优点:

优点:

安全性高:SM4采用的是32轮Feistel结构,具有较高的安全性。

效率高:SM4的加解密速度较快,尤其是在小设备上表现优异,因为SM4使用的参数相对较小,计算量相对较少。

自主可控:SM4是由中国密码学专家自主设计的,没有涉及外部专家,因此具有自主可控性。

缺点:

算法公开度低:SM4的算法细节没有完全公开,因此可能存在安全风险。

受限的国际认可度:SM4在国际上的认可度较低,受到限制。

SM4.java
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;

public class SM4 {
    public static final int SM4_ENCRYPT = 1;

    public static final int SM4_DECRYPT = 0;

    private int GET_ULONG_BE(byte[] b, int i) {
        int n = (int) (b[i] & 0xff) << 24 | (int) ((b[i + 1] & 0xff) << 16) | (int) ((b[i + 2] & 0xff) << 8) | (int) (b[i + 3] & 0xff) & 0xffffffff;
        return n;
    }

    private void PUT_ULONG_BE(int n, byte[] b, int i) {
        b[i] = (byte) (int) (0xFF & n >> 24);
        b[i + 1] = (byte) (int) (0xFF & n >> 16);
        b[i + 2] = (byte) (int) (0xFF & n >> 8);
        b[i + 3] = (byte) (int) (0xFF & n);
    }

    private int SHL(int x, int n) {
        return (x & 0xFFFFFFFF) << n;
    }

    private int ROTL(int x, int n) {
        return SHL(x, n) | x >> (32 - n);
    }

    public static final byte[] SboxTable = {(byte) 0xd6, (byte) 0x90, (byte) 0xe9, (byte) 0xfe,
            (byte) 0xcc, (byte) 0xe1, 0x3d, (byte) 0xb7, 0x16, (byte) 0xb6,
            0x14, (byte) 0xc2, 0x28, (byte) 0xfb, 0x2c, 0x05, 0x2b, 0x67,
            (byte) 0x9a, 0x76, 0x2a, (byte) 0xbe, 0x04, (byte) 0xc3,
            (byte) 0xaa, 0x44, 0x13, 0x26, 0x49, (byte) 0x86, 0x06,
            (byte) 0x99, (byte) 0x9c, 0x42, 0x50, (byte) 0xf4, (byte) 0x91,
            (byte) 0xef, (byte) 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43,
            (byte) 0xed, (byte) 0xcf, (byte) 0xac, 0x62, (byte) 0xe4,
            (byte) 0xb3, 0x1c, (byte) 0xa9, (byte) 0xc9, 0x08, (byte) 0xe8,
            (byte) 0x95, (byte) 0x80, (byte) 0xdf, (byte) 0x94, (byte) 0xfa,
            0x75, (byte) 0x8f, 0x3f, (byte) 0xa6, 0x47, 0x07, (byte) 0xa7,
            (byte) 0xfc, (byte) 0xf3, 0x73, 0x17, (byte) 0xba, (byte) 0x83,
            0x59, 0x3c, 0x19, (byte) 0xe6, (byte) 0x85, 0x4f, (byte) 0xa8,
            0x68, 0x6b, (byte) 0x81, (byte) 0xb2, 0x71, 0x64, (byte) 0xda,
            (byte) 0x8b, (byte) 0xf8, (byte) 0xeb, 0x0f, 0x4b, 0x70, 0x56,
            (byte) 0x9d, 0x35, 0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, (byte) 0xd1,
            (byte) 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, (byte) 0x87,
            (byte) 0xd4, 0x00, 0x46, 0x57, (byte) 0x9f, (byte) 0xd3, 0x27,
            0x52, 0x4c, 0x36, 0x02, (byte) 0xe7, (byte) 0xa0, (byte) 0xc4,
            (byte) 0xc8, (byte) 0x9e, (byte) 0xea, (byte) 0xbf, (byte) 0x8a,
            (byte) 0xd2, 0x40, (byte) 0xc7, 0x38, (byte) 0xb5, (byte) 0xa3,
            (byte) 0xf7, (byte) 0xf2, (byte) 0xce, (byte) 0xf9, 0x61, 0x15,
            (byte) 0xa1, (byte) 0xe0, (byte) 0xae, 0x5d, (byte) 0xa4,
            (byte) 0x9b, 0x34, 0x1a, 0x55, (byte) 0xad, (byte) 0x93, 0x32,
            0x30, (byte) 0xf5, (byte) 0x8c, (byte) 0xb1, (byte) 0xe3, 0x1d,
            (byte) 0xf6, (byte) 0xe2, 0x2e, (byte) 0x82, 0x66, (byte) 0xca,
            0x60, (byte) 0xc0, 0x29, 0x23, (byte) 0xab, 0x0d, 0x53, 0x4e, 0x6f,
            (byte) 0xd5, (byte) 0xdb, 0x37, 0x45, (byte) 0xde, (byte) 0xfd,
            (byte) 0x8e, 0x2f, 0x03, (byte) 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b,
            0x51, (byte) 0x8d, 0x1b, (byte) 0xaf, (byte) 0x92, (byte) 0xbb,
            (byte) 0xdd, (byte) 0xbc, 0x7f, 0x11, (byte) 0xd9, 0x5c, 0x41,
            0x1f, 0x10, 0x5a, (byte) 0xd8, 0x0a, (byte) 0xc1, 0x31,
            (byte) 0x88, (byte) 0xa5, (byte) 0xcd, 0x7b, (byte) 0xbd, 0x2d,
            0x74, (byte) 0xd0, 0x12, (byte) 0xb8, (byte) 0xe5, (byte) 0xb4,
            (byte) 0xb0, (byte) 0x89, 0x69, (byte) 0x97, 0x4a, 0x0c,
            (byte) 0x96, 0x77, 0x7e, 0x65, (byte) 0xb9, (byte) 0xf1, 0x09,
            (byte) 0xc5, 0x6e, (byte) 0xc6, (byte) 0x84, 0x18, (byte) 0xf0,
            0x7d, (byte) 0xec, 0x3a, (byte) 0xdc, 0x4d, 0x20, 0x79,
            (byte) 0xee, 0x5f, 0x3e, (byte) 0xd7, (byte) 0xcb, 0x39, 0x48};

    public static final int[] FK = {0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc};

    public static final int[] CK = {0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
            0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
            0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
            0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
            0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
            0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
            0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
            0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279};

    private byte sm4Sbox(byte inch) {
        int i = inch & 0xFF;
        byte retVal = SboxTable[i];
        return retVal;
    }

    private int sm4Lt(int ka) {
        int bb = 0;
        int c = 0;
        byte[] a = new byte[4];
        byte[] b = new byte[4];
        PUT_ULONG_BE(ka, a, 0);
        b[0] = sm4Sbox(a[0]);
        b[1] = sm4Sbox(a[1]);
        b[2] = sm4Sbox(a[2]);
        b[3] = sm4Sbox(a[3]);
        bb = GET_ULONG_BE(b, 0);
        c = bb ^ ROTL(bb, 2) ^ ROTL(bb, 10) ^ ROTL(bb, 18) ^ ROTL(bb, 24);
        return c;
    }

    private int sm4F(int x0, int x1, int x2, int x3, int rk) {
        return x0 ^ sm4Lt(x1 ^ x2 ^ x3 ^ rk);
    }

    private int sm4CalciRK(int ka) {
        int bb = 0;
        int rk = 0;
        byte[] a = new byte[4];
        byte[] b = new byte[4];
        PUT_ULONG_BE(ka, a, 0);
        b[0] = sm4Sbox(a[0]);
        b[1] = sm4Sbox(a[1]);
        b[2] = sm4Sbox(a[2]);
        b[3] = sm4Sbox(a[3]);
        bb = GET_ULONG_BE(b, 0);
        rk = bb ^ ROTL(bb, 13) ^ ROTL(bb, 23);
        return rk;
    }

    private void sm4_setkey(int[] SK, byte[] key) {
        int[] MK = new int[4];
        int[] k = new int[36];
        int i = 0;
        MK[0] = GET_ULONG_BE(key, 0);
        MK[1] = GET_ULONG_BE(key, 4);
        MK[2] = GET_ULONG_BE(key, 8);
        MK[3] = GET_ULONG_BE(key, 12);
        k[0] = MK[0] ^ (int) FK[0];
        k[1] = MK[1] ^ (int) FK[1];
        k[2] = MK[2] ^ (int) FK[2];
        k[3] = MK[3] ^ (int) FK[3];
        for (; i < 32; i++) {
            k[(i + 4)] = (k[i] ^ sm4CalciRK(k[(i + 1)] ^ k[(i + 2)] ^ k[(i + 3)] ^ (int) CK[i]));
            SK[i] = k[(i + 4)];
        }
    }

    private void sm4_one_round(int[] sk, byte[] input, byte[] output) {
        int i = 0;
        int[] ulbuf = new int[36];
        ulbuf[0] = GET_ULONG_BE(input, 0);
        ulbuf[1] = GET_ULONG_BE(input, 4);
        ulbuf[2] = GET_ULONG_BE(input, 8);
        ulbuf[3] = GET_ULONG_BE(input, 12);
        while (i < 32) {
            ulbuf[(i + 4)] = sm4F(ulbuf[i], ulbuf[(i + 1)], ulbuf[(i + 2)], ulbuf[(i + 3)], sk[i]);
            i++;
        }
        PUT_ULONG_BE(ulbuf[35], output, 0);
        PUT_ULONG_BE(ulbuf[34], output, 4);
        PUT_ULONG_BE(ulbuf[33], output, 8);
        PUT_ULONG_BE(ulbuf[32], output, 12);
    }

    private byte[] padding(byte[] input, int mode) {
        if (input == null) {
            return null;
        }

        byte[] ret = (byte[]) null;
        if (mode == SM4_ENCRYPT) {
            int p = 16 - input.length % 16;
            ret = new byte[input.length + p];
            System.arraycopy(input, 0, ret, 0, input.length);
            for (int i = 0; i < p; i++) {
                ret[input.length + i] = (byte) p;
            }
        } else {
            int p = input[input.length - 1];
            ret = new byte[input.length - p];
            System.arraycopy(input, 0, ret, 0, input.length - p);
        }
        return ret;
    }

    public void sm4_setkey_enc(SM4_Context ctx, byte[] key) throws Exception {
        if (ctx == null) {
            throw new Exception("ctx is null!");
        }

        if (key == null || key.length != 16) {
            throw new Exception("key error!");
        }

        ctx.mode = SM4_ENCRYPT;
        sm4_setkey(ctx.sk, key);
    }

    public byte[] sm4_crypt_ecb(SM4_Context ctx, byte[] input) throws Exception {
        if (input == null) {
            throw new Exception("input is null!");
        }

        if ((ctx.isPadding) && (ctx.mode == SM4_ENCRYPT)) {
            input = padding(input, SM4_ENCRYPT);
        }

        int length = input.length;
        ByteArrayInputStream bins = new ByteArrayInputStream(input);
        ByteArrayOutputStream bous = new ByteArrayOutputStream();
        for (; length > 0; length -= 16) {
            byte[] in = new byte[16];
            byte[] out = new byte[16];
            bins.read(in);
            sm4_one_round(ctx.sk, in, out);
            bous.write(out);
        }

        byte[] output = bous.toByteArray();
        if (ctx.isPadding && ctx.mode == SM4_DECRYPT) {
            output = padding(output, SM4_DECRYPT);
        }
        bins.close();
        bous.close();
        return output;
    }

    public void sm4_setkey_dec(SM4_Context ctx, byte[] key) throws Exception {
        if (ctx == null) {
            throw new Exception("ctx is null!");
        }

        if (key == null || key.length != 16) {
            throw new Exception("key error!");
        }

        int i = 0;
        ctx.mode = SM4_DECRYPT;
        sm4_setkey(ctx.sk, key);
        for (i = 0; i < 16; i++) {
            SWAP(ctx.sk, i);
        }
    }

    private void SWAP(int[] sk, int i) {
        int t = sk[i];
        sk[i] = sk[(31 - i)];
        sk[(31 - i)] = t;
    }

    public byte[] sm4_crypt_cbc(SM4_Context ctx, byte[] iv, byte[] input) throws Exception {
        if (iv == null || iv.length != 16) {
            throw new Exception("iv error!");
        }

        if (input == null) {
            throw new Exception("input is null!");
        }

        if (ctx.isPadding && ctx.mode == SM4_ENCRYPT) {
            input = padding(input, SM4_ENCRYPT);
        }

        int i = 0;
        int length = input.length;
        ByteArrayInputStream bins = new ByteArrayInputStream(input);
        ByteArrayOutputStream bous = new ByteArrayOutputStream();
        if (ctx.mode == SM4_ENCRYPT) {
            for (; length > 0; length -= 16) {
                byte[] in = new byte[16];
                byte[] out = new byte[16];
                byte[] out1 = new byte[16];

                bins.read(in);
                for (i = 0; i < 16; i++) {
                    out[i] = ((byte) (in[i] ^ iv[i]));
                }
                sm4_one_round(ctx.sk, out, out1);
                System.arraycopy(out1, 0, iv, 0, 16);
                bous.write(out1);
            }
        } else {
            byte[] temp = new byte[16];
            for (; length > 0; length -= 16) {
                byte[] in = new byte[16];
                byte[] out = new byte[16];
                byte[] out1 = new byte[16];

                bins.read(in);
                System.arraycopy(in, 0, temp, 0, 16);
                sm4_one_round(ctx.sk, in, out);
                for (i = 0; i < 16; i++) {
                    out1[i] = ((byte) (out[i] ^ iv[i]));
                }
                System.arraycopy(temp, 0, iv, 0, 16);
                bous.write(out1);
            }
        }

        byte[] output = bous.toByteArray();
        if (ctx.isPadding && ctx.mode == SM4_DECRYPT) {
            output = padding(output, SM4_DECRYPT);
        }
        bins.close();
        bous.close();
        return output;
    }
}
Util.java
import java.math.BigInteger;

public class Util {
    /**
     * 整形转换成网络传输的字节流(字节数组)型数据
     *
     * @param num 一个整型数据
     * @return 4个字节的自己数组
     */
    public static byte[] intToBytes(int num) {
        byte[] bytes = new byte[4];
        bytes[0] = (byte) (0xff & (num >> 0));
        bytes[1] = (byte) (0xff & (num >> 8));
        bytes[2] = (byte) (0xff & (num >> 16));
        bytes[3] = (byte) (0xff & (num >> 24));
        return bytes;
    }

    /**
     * 四个字节的字节数据转换成一个整形数据
     *
     * @param bytes 4个字节的字节数组
     * @return 一个整型数据
     */
    public static int byteToInt(byte[] bytes) {
        int num = 0;
        int temp;
        temp = (0x000000ff & (bytes[0])) << 0;
        num = num | temp;
        temp = (0x000000ff & (bytes[1])) << 8;
        num = num | temp;
        temp = (0x000000ff & (bytes[2])) << 16;
        num = num | temp;
        temp = (0x000000ff & (bytes[3])) << 24;
        num = num | temp;
        return num;
    }

    /**
     * 长整形转换成网络传输的字节流(字节数组)型数据
     *
     * @param num 一个长整型数据
     * @return 4个字节的自己数组
     */
    public static byte[] longToBytes(long num) {
        byte[] bytes = new byte[8];
        for (int i = 0; i < 8; i++) {
            bytes[i] = (byte) (0xff & (num >> (i * 8)));
        }

        return bytes;
    }

    /**
     * 大数字转换字节流(字节数组)型数据
     *
     * @param n
     * @return
     */
    public static byte[] byteConvert32Bytes(BigInteger n) {
        byte tmpd[] = (byte[]) null;
        if (n == null) {
            return null;
        }

        if (n.toByteArray().length == 33) {
            tmpd = new byte[32];
            System.arraycopy(n.toByteArray(), 1, tmpd, 0, 32);
        } else if (n.toByteArray().length == 32) {
            tmpd = n.toByteArray();
        } else {
            tmpd = new byte[32];
            for (int i = 0; i < 32 - n.toByteArray().length; i++) {
                tmpd[i] = 0;
            }
            System.arraycopy(n.toByteArray(), 0, tmpd, 32 - n.toByteArray().length, n.toByteArray().length);
        }
        return tmpd;
    }

    /**
     * 换字节流(字节数组)型数据转大数字
     *
     * @param b
     * @return
     */
    public static BigInteger byteConvertInteger(byte[] b) {
        if (b[0] < 0) {
            byte[] temp = new byte[b.length + 1];
            temp[0] = 0;
            System.arraycopy(b, 0, temp, 1, b.length);
            return new BigInteger(temp);
        }
        return new BigInteger(b);
    }

    /**
     * 根据字节数组获得值(十六进制数字)
     *
     * @param bytes
     * @return
     */
    public static String getHexString(byte[] bytes) {
        return getHexString(bytes, true);
    }

    /**
     * 根据字节数组获得值(十六进制数字)
     *
     * @param bytes
     * @param upperCase
     * @return
     */
    public static String getHexString(byte[] bytes, boolean upperCase) {
        String ret = "";
        for (int i = 0; i < bytes.length; i++) {
            ret += Integer.toString((bytes[i] & 0xff) + 0x100, 16).substring(1);
        }
        return upperCase ? ret.toUpperCase() : ret;
    }

    /**
     * 打印十六进制字符串
     *
     * @param bytes
     */
    public static void printHexString(byte[] bytes) {
        for (int i = 0; i < bytes.length; i++) {
            String hex = Integer.toHexString(bytes[i] & 0xFF);
            if (hex.length() == 1) {
                hex = '0' + hex;
            }
            System.out.print("0x" + hex.toUpperCase() + ",");
        }
        System.out.println("");
    }

    /**
     * Convert hex string to byte[]
     *
     * @param hexString the hex string
     * @return byte[]
     */
    public static byte[] hexStringToBytes(String hexString) {
        if (hexString == null || hexString.equals("")) {
            return null;
        }

        hexString = hexString.toUpperCase();
        int length = hexString.length() / 2;
        char[] hexChars = hexString.toCharArray();
        byte[] d = new byte[length];
        for (int i = 0; i < length; i++) {
            int pos = i * 2;
            d[i] = (byte) (charToByte(hexChars[pos]) << 4 | charToByte(hexChars[pos + 1]));
        }
        return d;
    }

    /**
     * Convert char to byte
     *
     * @param c char
     * @return byte
     */
    public static byte charToByte(char c) {
        return (byte) "0123456789ABCDEF".indexOf(c);
    }

    /**
     * 用于建立十六进制字符的输出的小写字符数组
     */
    private static final char[] DIGITS_LOWER = {'0', '1', '2', '3', '4', '5',
            '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};

    /**
     * 用于建立十六进制字符的输出的大写字符数组
     */
    private static final char[] DIGITS_UPPER = {'0', '1', '2', '3', '4', '5',
            '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};

    /**
     * 将字节数组转换为十六进制字符数组
     *
     * @param data byte[]
     * @return 十六进制char[]
     */
    public static char[] encodeHex(byte[] data) {
        return encodeHex(data, true);
    }

    /**
     * 将字节数组转换为十六进制字符数组
     *
     * @param data        byte[]
     * @param toLowerCase <code>true</code> 传换成小写格式 , <code>false</code> 传换成大写格式
     * @return 十六进制char[]
     */
    public static char[] encodeHex(byte[] data, boolean toLowerCase) {
        return encodeHex(data, toLowerCase ? DIGITS_LOWER : DIGITS_UPPER);
    }

    /**
     * 将字节数组转换为十六进制字符数组
     *
     * @param data     byte[]
     * @param toDigits 用于控制输出的char[]
     * @return 十六进制char[]
     */
    protected static char[] encodeHex(byte[] data, char[] toDigits) {
        int l = data.length;
        char[] out = new char[l << 1];
        // two characters form the hex value.
        for (int i = 0, j = 0; i < l; i++) {
            out[j++] = toDigits[(0xF0 & data[i]) >>> 4];
            out[j++] = toDigits[0x0F & data[i]];
        }
        return out;
    }

    /**
     * 将字节数组转换为十六进制字符串
     *
     * @param data byte[]
     * @return 十六进制String
     */
    public static String encodeHexString(byte[] data) {
        return encodeHexString(data, true);
    }

    /**
     * 将字节数组转换为十六进制字符串
     *
     * @param data        byte[]
     * @param toLowerCase <code>true</code> 传换成小写格式 , <code>false</code> 传换成大写格式
     * @return 十六进制String
     */
    public static String encodeHexString(byte[] data, boolean toLowerCase) {
        return encodeHexString(data, toLowerCase ? DIGITS_LOWER : DIGITS_UPPER);
    }

    /**
     * 将字节数组转换为十六进制字符串
     *
     * @param data     byte[]
     * @param toDigits 用于控制输出的char[]
     * @return 十六进制String
     */
    protected static String encodeHexString(byte[] data, char[] toDigits) {
        return new String(encodeHex(data, toDigits));
    }

    /**
     * 将十六进制字符数组转换为字节数组
     *
     * @param data 十六进制char[]
     * @return byte[]
     * @throws RuntimeException 如果源十六进制字符数组是一个奇怪的长度,将抛出运行时异常
     */
    public static byte[] decodeHex(char[] data) {
        int len = data.length;

        if ((len & 0x01) != 0) {
            throw new RuntimeException("Odd number of characters.");
        }

        byte[] out = new byte[len >> 1];

        // two characters form the hex value.
        for (int i = 0, j = 0; j < len; i++) {
            int f = toDigit(data[j], j) << 4;
            j++;
            f = f | toDigit(data[j], j);
            j++;
            out[i] = (byte) (f & 0xFF);
        }

        return out;
    }

    /**
     * 将十六进制字符转换成一个整数
     *
     * @param ch    十六进制char
     * @param index 十六进制字符在字符数组中的位置
     * @return 一个整数
     * @throws RuntimeException 当ch不是一个合法的十六进制字符时,抛出运行时异常
     */
    protected static int toDigit(char ch, int index) {
        int digit = Character.digit(ch, 16);
        if (digit == -1) {
            throw new RuntimeException("Illegal hexadecimal character " + ch
                    + " at index " + index);
        }
        return digit;
    }

    /**
     * 数字字符串转ASCII码字符串
     *
     * @param String 字符串
     * @return ASCII字符串
     */
    public static String StringToAsciiString(String content) {
        String result = "";
        int max = content.length();
        for (int i = 0; i < max; i++) {
            char c = content.charAt(i);
            String b = Integer.toHexString(c);
            result = result + b;
        }
        return result;
    }

    /**
     * 十六进制转字符串
     *
     * @param hexString  十六进制字符串
     * @param encodeType 编码类型4:Unicode,2:普通编码
     * @return 字符串
     */
    public static String hexStringToString(String hexString, int encodeType) {
        String result = "";
        int max = hexString.length() / encodeType;
        for (int i = 0; i < max; i++) {
            char c = (char) hexStringToAlgorism(hexString
                    .substring(i * encodeType, (i + 1) * encodeType));
            result += c;
        }
        return result;
    }

    /**
     * 十六进制字符串装十进制
     *
     * @param hex 十六进制字符串
     * @return 十进制数值
     */
    public static int hexStringToAlgorism(String hex) {
        hex = hex.toUpperCase();
        int max = hex.length();
        int result = 0;
        for (int i = max; i > 0; i--) {
            char c = hex.charAt(i - 1);
            int algorism = 0;
            if (c >= '0' && c <= '9') {
                algorism = c - '0';
            } else {
                algorism = c - 55;
            }
            result += Math.pow(16, max - i) * algorism;
        }
        return result;
    }

    /**
     * 十六转二进制
     *
     * @param hex 十六进制字符串
     * @return 二进制字符串
     */
    public static String hexStringToBinary(String hex) {
        hex = hex.toUpperCase();
        String result = "";
        int max = hex.length();
        for (int i = 0; i < max; i++) {
            char c = hex.charAt(i);
            switch (c) {
                case '0':
                    result += "0000";
                    break;
                case '1':
                    result += "0001";
                    break;
                case '2':
                    result += "0010";
                    break;
                case '3':
                    result += "0011";
                    break;
                case '4':
                    result += "0100";
                    break;
                case '5':
                    result += "0101";
                    break;
                case '6':
                    result += "0110";
                    break;
                case '7':
                    result += "0111";
                    break;
                case '8':
                    result += "1000";
                    break;
                case '9':
                    result += "1001";
                    break;
                case 'A':
                    result += "1010";
                    break;
                case 'B':
                    result += "1011";
                    break;
                case 'C':
                    result += "1100";
                    break;
                case 'D':
                    result += "1101";
                    break;
                case 'E':
                    result += "1110";
                    break;
                case 'F':
                    result += "1111";
                    break;
            }
        }
        return result;
    }

    /**
     * ASCII码字符串转数字字符串
     *
     * @param String ASCII字符串
     * @return 字符串
     */
    public static String AsciiStringToString(String content) {
        String result = "";
        int length = content.length() / 2;
        for (int i = 0; i < length; i++) {
            String c = content.substring(i * 2, i * 2 + 2);
            int a = hexStringToAlgorism(c);
            char b = (char) a;
            String d = String.valueOf(b);
            result += d;
        }
        return result;
    }

    /**
     * 将十进制转换为指定长度的十六进制字符串
     *
     * @param algorism  int 十进制数字
     * @param maxLength int 转换后的十六进制字符串长度
     * @return String 转换后的十六进制字符串
     */
    public static String algorismToHexString(int algorism, int maxLength) {
        String result = "";
        result = Integer.toHexString(algorism);

        if (result.length() % 2 == 1) {
            result = "0" + result;
        }
        return patchHexString(result.toUpperCase(), maxLength);
    }

    /**
     * 字节数组转为普通字符串(ASCII对应的字符)
     *
     * @param bytearray byte[]
     * @return String
     */
    public static String byteToString(byte[] bytearray) {
        String result = "";
        char temp;

        int length = bytearray.length;
        for (int i = 0; i < length; i++) {
            temp = (char) bytearray[i];
            result += temp;
        }
        return result;
    }

    /**
     * 二进制字符串转十进制
     *
     * @param binary 二进制字符串
     * @return 十进制数值
     */
    public static int binaryToAlgorism(String binary) {
        int max = binary.length();
        int result = 0;
        for (int i = max; i > 0; i--) {
            char c = binary.charAt(i - 1);
            int algorism = c - '0';
            result += Math.pow(2, max - i) * algorism;
        }
        return result;
    }

    /**
     * 十进制转换为十六进制字符串
     *
     * @param algorism int 十进制的数字
     * @return String 对应的十六进制字符串
     */
    public static String algorismToHEXString(int algorism) {
        String result = "";
        result = Integer.toHexString(algorism);

        if (result.length() % 2 == 1) {
            result = "0" + result;

        }
        result = result.toUpperCase();

        return result;
    }

    /**
     * HEX字符串前补0,主要用于长度位数不足。
     *
     * @param str       String 需要补充长度的十六进制字符串
     * @param maxLength int 补充后十六进制字符串的长度
     * @return 补充结果
     */
    static public String patchHexString(String str, int maxLength) {
        String temp = "";
        for (int i = 0; i < maxLength - str.length(); i++) {
            temp = "0" + temp;
        }
        str = (temp + str).substring(0, maxLength);
        return str;
    }

    /**
     * 将一个字符串转换为int
     *
     * @param s          String 要转换的字符串
     * @param defaultInt int 如果出现异常,默认返回的数字
     * @param radix      int 要转换的字符串是什么进制的,如16 8 10.
     * @return int 转换后的数字
     */
    public static int parseToInt(String s, int defaultInt, int radix) {
        int i = 0;
        try {
            i = Integer.parseInt(s, radix);
        } catch (NumberFormatException ex) {
            i = defaultInt;
        }
        return i;
    }

    /**
     * 将一个十进制形式的数字字符串转换为int
     *
     * @param s          String 要转换的字符串
     * @param defaultInt int 如果出现异常,默认返回的数字
     * @return int 转换后的数字
     */
    public static int parseToInt(String s, int defaultInt) {
        int i = 0;
        try {
            i = Integer.parseInt(s);
        } catch (NumberFormatException ex) {
            i = defaultInt;
        }
        return i;
    }

    /**
     * 十六进制串转化为byte数组
     *
     * @return the array of byte
     */
    public static byte[] hexToByte(String hex)
            throws IllegalArgumentException {
        if (hex.length() % 2 != 0) {
            throw new IllegalArgumentException();
        }
        char[] arr = hex.toCharArray();
        byte[] b = new byte[hex.length() / 2];
        for (int i = 0, j = 0, l = hex.length(); i < l; i++, j++) {
            String swap = "" + arr[i++] + arr[i];
            int byteint = Integer.parseInt(swap, 16) & 0xFF;
            b[j] = new Integer(byteint).byteValue();
        }
        return b;
    }

    /**
     * 字节数组转换为十六进制字符串
     *
     * @param b byte[] 需要转换的字节数组
     * @return String 十六进制字符串
     */
    public static String byteToHex(byte b[]) {
        if (b == null) {
            throw new IllegalArgumentException(
                    "Argument b ( byte array ) is null! ");
        }
        String hs = "";
        String stmp = "";
        for (int n = 0; n < b.length; n++) {
            stmp = Integer.toHexString(b[n] & 0xff);
            if (stmp.length() == 1) {
                hs = hs + "0" + stmp;
            } else {
                hs = hs + stmp;
            }
        }
        return hs.toUpperCase();
    }

    public static byte[] subByte(byte[] input, int startIndex, int length) {
        byte[] bt = new byte[length];
        for (int i = 0; i < length; i++) {
            bt[i] = input[i + startIndex];
        }
        return bt;
    }
}
SM4_Context.java
public class SM4_Context {
    public int mode;

    public int[] sk;

    public boolean isPadding;

    public SM4_Context() {
        this.mode = 1;
        this.isPadding = true;
        this.sk = new int[32];
    }
}
SM4Utils.java
import java.io.IOException;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import sun.misc.BASE64Decoder;
import sun.misc.BASE64Encoder;

public class SM4Utils {
    private String secretKey = "";
    private String iv = "";
    private boolean hexString = false;

    public SM4Utils() {
    }

    public String encryptData_ECB(String plainText) {
        try {
            SM4_Context ctx = new SM4_Context();
            ctx.isPadding = true;
            ctx.mode = SM4.SM4_ENCRYPT;

            byte[] keyBytes;
            keyBytes = secretKey.getBytes();
            SM4 sm4 = new SM4();
            sm4.sm4_setkey_enc(ctx, keyBytes);
            byte[] encrypted = sm4.sm4_crypt_ecb(ctx, plainText.getBytes("UTF-8"));
            String cipherText = new BASE64Encoder().encode(encrypted);
            if (cipherText != null && cipherText.trim().length() > 0) {
                Pattern p = Pattern.compile("\\s*|\t|\r|\n");
                Matcher m = p.matcher(cipherText);
                cipherText = m.replaceAll("");
            }
            return cipherText;
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }

    public String decryptData_ECB(String cipherText) {
        try {
            SM4_Context ctx = new SM4_Context();
            ctx.isPadding = true;
            ctx.mode = SM4.SM4_DECRYPT;

            byte[] keyBytes;
            keyBytes = secretKey.getBytes();
            SM4 sm4 = new SM4();
            sm4.sm4_setkey_dec(ctx, keyBytes);
            byte[] decrypted = sm4.sm4_crypt_ecb(ctx, new BASE64Decoder().decodeBuffer(cipherText));
            return new String(decrypted, "UTF-8");
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }

    public String encryptData_CBC(String plainText) {
        try {
            SM4_Context ctx = new SM4_Context();
            ctx.isPadding = true;
            ctx.mode = SM4.SM4_ENCRYPT;

            byte[] keyBytes;
            byte[] ivBytes;

            keyBytes = secretKey.getBytes();
            ivBytes = iv.getBytes();

            SM4 sm4 = new SM4();
            sm4.sm4_setkey_enc(ctx, keyBytes);
            byte[] encrypted = sm4.sm4_crypt_cbc(ctx, ivBytes, plainText.getBytes("UTF-8"));
            String cipherText = new BASE64Encoder().encode(encrypted);
            if (cipherText != null && cipherText.trim().length() > 0) {
                Pattern p = Pattern.compile("\\s*|\t|\r|\n");
                Matcher m = p.matcher(cipherText);
                cipherText = m.replaceAll("");
            }
            return cipherText;
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }

    public String decryptData_CBC(String cipherText) {
        try {
            SM4_Context ctx = new SM4_Context();
            ctx.isPadding = true;
            ctx.mode = SM4.SM4_DECRYPT;

            byte[] keyBytes;
            byte[] ivBytes;
            if (hexString) {
                keyBytes = Util.hexStringToBytes(secretKey);
                ivBytes = Util.hexStringToBytes(iv);
            } else {
                keyBytes = secretKey.getBytes();
                ivBytes = iv.getBytes();
            }

            SM4 sm4 = new SM4();
            sm4.sm4_setkey_dec(ctx, keyBytes);
            byte[] decrypted = sm4.sm4_crypt_cbc(ctx, ivBytes, new BASE64Decoder().decodeBuffer(cipherText));
            return new String(decrypted, "UTF-8");
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }

    public static void main(String[] args) throws IOException {
        String plainText = "东临碣石,以观沧海";
        SM4Utils sm4 = new SM4Utils();
        sm4.secretKey = "11HDESaAhiHHugDz";
        plainText.getBytes("UTF-8");
        System.out.println("ECB模式");
        String cipherText = sm4.encryptData_ECB(plainText);
        System.out.println("密文: " + cipherText);
        System.out.println("");

        plainText = sm4.decryptData_ECB(cipherText);
        System.out.println("明文: " + plainText);
        System.out.println("");

        System.out.println("CBC模式");
        sm4.iv = "UISwD9fW6cFh9SNS";
        cipherText = sm4.encryptData_CBC(plainText);
        System.out.println("密文: " + cipherText);
        System.out.println("");

        plainText = sm4.decryptData_CBC(cipherText);
        System.out.println("明文: " + plainText);
    }
}
ECB模式
密文: wtpCqJK/zKfwff38IfCmaxnABddcH5wC1p8eNXbX5q4=

明文: 东临碣石,以观沧海

CBC模式
密文: uLwJVA/DbXwkrTcDEQfpIWYfB8GLmoD8d2wI4mh6EUg=

明文: 东临碣石,以观沧海

java实现国密SM4的加密和解密方式(即时通讯的消息对话加密采用SM2还是SM4)

 文章来源地址https://www.toymoban.com/news/detail-472281.html

到了这里,关于java实现国密SM4的加密和解密方式(即时通讯的消息对话加密采用SM2还是SM4)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C# 实现 国密SM4/ECB/PKCS7Padding对称加密解密

    C# 实现 国密SM4/ECB/PKCS7Padding对称加密解密,为了演示方便本问使用的是Visual Studio 2022 来构建代码的 1、新建项目,之后选择 项目 鼠标右键选择  管理NuGet程序包管理,输入  BouncyCastle 回车 添加BouncyCastle程序包 2、代码如下:CBC模式 代码如下:ECB模式 3、运行 4、SM4密码算法

    2024年02月11日
    浏览(31)
  • 医保移动支付加密解密请求工具封装【国密SM2SM4】

    医保移动支付加密解密请求工具封装 定点医药机构向地方移动支付中心发起费用明细上传、支付下单、医保退费等交易时需要发送密文,由于各大医疗机构厂商的开发语各不相同,可能要有java的、c#的、python的、pb的、nodjs的、php的、还可能有Delphi的等。。。。很多开发语言

    2024年01月21日
    浏览(50)
  • 使用 Java Bouncy Castle实现国密算法SM4、SM3以及SM2的加密

    国密算法的实现借助了Java库函数 Bouncy Castle,加密库安装使用教程请参考链接 SM4,又称为商密算法,是一种分组密码算法,于2012年由中国密码技术研究中心(中国密码学会成员)发布,目前已成为我国国家密码算法,并在多个领域得到了广泛的应用。SM4算法采用了32轮迭代结

    2024年02月16日
    浏览(25)
  • 国密算法 SM4 加解密 java 工具类

    👑 博主简介:知名开发工程师 👣 出没地点:北京 💊 2023年目标:成为一个大佬 ——————————————————————————————————————————— 版权声明:本文为原创文章,如需转载须注明出处,喜欢可收藏! 我国国家密码管理局陆续发

    2024年02月11日
    浏览(23)
  • 国密算法SM2/3/4简单比较,以及基于Java的SM4(ECB模式,CBC模式)对称加解密实现

    常用的国密算法包含SM2,SM3,SM4。以下针对每个算法使用场景进行说明以比较其差异 SM2:非对称加密算法,可以替代RSA 数字签名,SM2为非对称加密,加解密使用一对私钥和公钥,只有签名发行者拥有私钥,可用于加密,其他需要验证解密或验签者使用公钥进行。如果使用公

    2024年04月13日
    浏览(28)
  • 国密sm2公钥加密 私钥解密java代码实现

    目录 一、引入jar包 二、生成秘钥对,加解密工具类

    2024年02月11日
    浏览(41)
  • 国密算法 SM4加密算法 Python完整实现

    SM4算法是一种 对称加密算法 ,也被称为国密算法。它是由中国密码学家设计的,已被列入国家密码局的标准。 SM4算法使用 128位的密钥和分组大小 ,使用 32轮迭代 加密,可以用于加密数据和验证消息认证码。它的加密效率很高,安全性也很好,被广泛应用于各种安全领域,

    2024年02月11日
    浏览(30)
  • Java SM4加密解密

    2024年02月11日
    浏览(24)
  • 国密算法 SM4 对称加密 分组密码 python实现完整代码

    目前,python实现的国密算法库主要是 python-gmssl 库和 snowland-smx ( pysmx )库,二者都对SM2(仅公钥加解密和数字签名)、SM3、SM4进行了细致而优雅的实现。 GMSSL. https://github.com/duanhongyi/gmssl snowland-smx. https://gitee.com/snowlandltd/ snowland-smx-python PyCryptodome. https://www.pycryptodome.org 最近用

    2024年02月06日
    浏览(32)
  • js sm4实现加密解密

    2023.10.25今天我学习了如何使用sm4进行加密解密: 注意:前端和后端的编码必须相同才能使用,不然会出现空字符串的错误。 一、首先安装sm4.js包: package.json中的版本: (安装失败的话可以直接复制下面的版本然后npm install) 二、main.js中全局引入或局部引入: 这个是全局

    2024年01月18日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包