对角占优矩阵(Diagonally-dominant Matrix)
作用:它较多出现于经济价值模型和反网络系统的系数矩阵及解某些确定微分方程的数值解法中(来自百度百科)
For some matrices you can see quickly that they are invertible because every number a i i a_{ii} aii on their main diagonal dominates the off-diagonal part of that row i i i
对角占优矩阵是 可逆的
例1:
∣ a 11 ∣ = 3 > ∣ a 12 ∣ + ∣ a 13 ∣ = 1 + 1 = 2 ∣ a 22 ∣ = 3 > ∣ a 21 ∣ + ∣ a 23 ∣ = 1 + 1 = 2 ∣ a 33 ∣ = 3 > ∣ a 31 ∣ + ∣ a 32 ∣ = 1 + 1 = 2 |a_{11}|=3\gt |a_{12}|+|a_{13}|=1+1=2\\ |a_{22}|=3\gt |a_{21}|+|a_{23}|=1+1=2\\ |a_{33}|=3\gt |a_{31}|+|a_{32}|=1+1=2 ∣a11∣=3>∣a12∣+∣a13∣=1+1=2∣a22∣=3>∣a21∣+∣a23∣=1+1=2∣a33∣=3>∣a31∣+∣a32∣=1+1=2
So A A A is diagonally-dominant ( 3 > 2 3\gt 2 3>2)
例2:
2 = ∣ a 11 ∣ = ∣ a 12 ∣ + ∣ a 13 ∣ = 1 + 1 = 2 2 = ∣ a 22 ∣ = ∣ a 21 ∣ + ∣ a 23 ∣ = 1 + 1 = 2 3 = ∣ a 33 ∣ > ∣ a 31 ∣ + ∣ a 32 ∣ = 1 + 1 = 2 2=|a_{11}|= |a_{12}|+|a_{13}|=1+1=2\\ 2=|a_{22}|= |a_{21}|+|a_{23}|=1+1=2\\ 3=|a_{33}|\gt |a_{31}|+|a_{32}|=1+1=2 2=∣a11∣=∣a12∣+∣a13∣=1+1=22=∣a22∣=∣a21∣+∣a23∣=1+1=23=∣a33∣>∣a31∣+∣a32∣=1+1=2
So B B B is NOT diagonally-dominant,but still Invertible( d e t ( B ) ≠ 0 det(B)\neq 0 det(B)=0)文章来源:https://www.toymoban.com/news/detail-472582.html
例3:
These column vectors are independent,So C is singular and NOT Invertible文章来源地址https://www.toymoban.com/news/detail-472582.html
到了这里,关于对角占优矩阵(Diagonally-dominant Matrix)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!