DIP第7章知识点

这篇具有很好参考价值的文章主要介绍了DIP第7章知识点。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

DIP的其他章节都好复习,唯独就这个第7章小波变换。复习起来十分头大,所以我开始写他的课后题,雾。

7.3 相关

已知两个连续函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) f f f g g g 的相关(当 f ( x ) ≠ g ( x ) f(x)≠g(x) f(x)=g(x) 时,称为互相关;当 f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x) 时,称为自相关)定义为

f ⋆ g ( Δ x ) = ∫ − ∞ ∞ f ∗ ( x ) g ( x + Δ x ) d x = ⟨ f ( x ) , g ( x + Δ x ) ⟩ f \star g(\Delta x)=\int_{-\infty}^{\infty} f^{*}(x) g(x+\Delta x) \mathrm{d} x=\langle f(x), g(x+\Delta x)\rangle fg(Δx)=f(x)g(x+Δx)dx=f(x),g(x+Δx)⟩

相关有时称为 f f f g g g滑动内积,度量的是 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 的相似性,是它们相对位移 Δ x Δx Δx 的函数。若 Δ x = 0 Δx=0 Δx=0,则有

f ⋆ g ( 0 ) = ⟨ f ( x ) , g ( x ) ⟩ f \star g(0)=\langle f(x), g(x)\rangle fg(0)=f(x),g(x)⟩

基函数 h h h 的能量,在时间-频率平面上集中于点 ( μ t , μ f ) (μ_t, μ_f) (μt,μf) 处。大部分能量,落在面积为 4 σ t σ f 4σ_tσ_f 4σtσf 的一个矩形区域(称为海森堡盒或单元),

σ t 2 σ f 2 ≥ 1 16 π 2 \sigma_{t}^{2} \sigma_{f}^{2} \geq \frac{1}{16 \pi^{2}} σt2σf216π21

因为函数的支撑集定义为函数非零的点的集合,由海森堡测不准原理知,函数在时间和频率上都存在有限支撑集是不可能的。

7.5 基图像

注意:最大频率的DFT、DHT 基图像,出现在 u = 4 u=4 u=4 v = 4 v=4 v=4 时。离散余弦变换、离散正弦变换出现在 u = 7 , v = 7 u=7,v=7 u=7,v=7 时。

7.6 傅里叶相关变换

7.6.1 离散哈特利变换

s ( x , u ) = 1 N cas ⁡ 2 π u x N = 1 N ( cos ⁡ 2 π u x N + sin ⁡ 2 π u x N ) s(x, u)=\frac{1}{\sqrt{N}} \operatorname{cas} \frac{2 \pi u x}{N}=\frac{1}{\sqrt{N}}\left(\cos \frac{2 \pi u x}{N}+\sin \frac{2 \pi u x}{N}\right) s(x,u)=N 1casN2πux=N 1(cosN2πux+sinN2πux)

7.6.3 离散正弦变换

类似于DCT,DST具有与DFT大致相同的频率范围,但频率分辨率是后者的2倍。注意:与DCT和DFT的不同之处,DST没有直流(u=0)分量。

s ( x , u ) = 2 N + 1 sin ⁡ ( x + 1 ) ( u + 1 ) π N + 1 s(x, u)=\sqrt{\frac{2}{N+1}} \sin \frac{(x+1)(u+1) \pi}{N+1} s(x,u)=N+12 sinN+1(x+1)(u+1)π

close all; clear all; clc;
A = dctmtx(8);
B = A';
C = zeros(8, 8, 64);
m = 0;
for i = 1:8
    for j = 1:8
        m = m+1;
        C(:, :, m) = B(:, i)*A(j, :);
    end
end
minvalue = min(min(min(C)));
maxvalue = max(max(max(C)));
figure,
%显示灰度图像的范围,指定为 [low high] 形式的二元素向量。
% imshow 函数将值 low(以及任何小于 low 的值)显示为黑色,并将值 high(以及任何大于 high 的值)显示为白色。
for k = 1:64
    subplot(8, 8, k), imshow(C(:, :, k), [minvalue, maxvalue]);
end

DIP第7章知识点
对于长度为 N = 2 J N=2^J N=2J 的输入序列, FWT: O ( N ) O(N) O(N); FFT: O ( N log ⁡ 2 N ) O(N\log_2N) O(Nlog2N)

为更好地控制时间-频率平面的划分(即得到更小的高频带宽), 必须将 FWT 推广到称为 小波包 的更灵活的分解。这一推广的代价是,计算复杂度:从FWT的 O ( N ) O(N) O(N) 增加到小波包的 O ( N log ⁡ 2 N ) O(N\log_2N) O(Nlog2N),与FFT相同。

7.35 推导公式(7.140)

d j ( k ) = ∑ n h ψ ( n − 2 k ) c j + 1 ( n ) (7.140) d_{j}(k)=\sum_{n} h_{\psi}(n-2 k) c_{j+1}(n)\tag{7.140} dj(k)=nhψ(n2k)cj+1(n)(7.140)

这个公式是快速小波变换中的,大概的含义就是小波空间 W j W_j Wj 中的函数可以由尺度空间 V j + 1 V_{j+1} Vj+1 中的函数来表示。这个是方便理解的,我们可以看书上的这张图。

DIP第7章知识点
根据式(7.135)
d j = ⟨ f ( x ) , ψ j , k ( x ) ⟩ (7.135) d_{j}=\left\langle f(x), \psi_{j, k}(x)\right\rangle\tag{7.135} dj=f(x),ψj,k(x)(7.135)

我们可以得到:

d j ( k ) = ∫ f ( x ) 2 j / 2 ψ ( 2 j x − k ) d x d_{j}(k)=\int f(x) 2^{j / 2} \psi\left(2^{j} x-k\right) d x dj(k)=f(x)2j/2ψ(2jxk)dx

但是这里我们要推导的是细节系数和尺度系数之间的关系,所以需要将 ψ ( 2 j x − k ) \psi\left(2^{j} x-k\right) ψ(2jxk) 替换掉。我们观察到(7.130)就是小波函数关于尺度函数加权和的形式,

ψ ( x ) = ∑ k ∈ Z h ψ ( k ) 2 φ ( 2 x − k ) (7.130) \psi(x)=\sum_{k\in\mathbf{Z}} h_{\psi}(k) \sqrt{2} \varphi(2 x-k)\tag{7.130} ψ(x)=kZhψ(k)2 φ(2xk)(7.130)

ψ ( 2 j x − k ) = ∑ m h ψ ( m − 2 k ) 2 φ ( 2 j + 1 x − m ) \psi\left(2^{j} x-k\right)=\sum_{m} h_{\psi}(m-2 k) \sqrt{2} \varphi\left(2^{j+1} x-m\right) ψ(2jxk)=mhψ(m2k)2 φ(2j+1xm)

其中, m ∈ Z m\in Z mZ,于是我们可以得到

d j ( k ) = ∫ f ( x ) 2 j / 2 [ ∑ m h ψ ( m − 2 k ) 2 φ ( 2 j + 1 x − m ) ] d x d_{j}(k)=\int f(x) 2^{j / 2}\left[\sum_{m} h_{\psi}(m-2 k) \sqrt{2} \varphi\left(2^{j+1} x-m\right)\right] d x dj(k)=f(x)2j/2[mhψ(m2k)2 φ(2j+1xm)]dx

交换积分和求和的次序,可以得到

d j ( k ) = ∑ m h ψ ( m − 2 k ) ∫ f ( x ) 2 ( j + 1 ) / 2 φ ( 2 j + 1 x − m ) d x = ∑ m h ψ ( m − 2 k ) c j + 1 ( m ) \begin{aligned} d_{j}(k)&=\sum_{m} h_{\psi}(m-2 k) \int f(x) 2^{(j+1) / 2} \varphi\left(2^{j+1} x-m\right) d x\\ &=\sum_{m} h_{\psi}(m-2 k) c_{j+1}(m) \end{aligned} dj(k)=mhψ(m2k)f(x)2(j+1)/2φ(2j+1xm)dx=mhψ(m2k)cj+1(m)

clc; clear all; close all; 
f=imread('4.一幅512×512的图像.tif'); 
f=im2double(f); 
[cA,cH,cV,cD]=dwt2(f, 'haar'); 
cA=mat2gray(cA); 
cH=mat2gray(cH); 
cV=mat2gray(cV); 
cD=mat2gray(cD); 
w=[cA,cH;cV,cD];
figure; imshow(w); 

DIP第7章知识点文章来源地址https://www.toymoban.com/news/detail-472627.html

到了这里,关于DIP第7章知识点的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Web知识点复习

    1. get/post请求优缺点 (1)post更安全(不会作为url的一部分,不会被缓存、保存在服务器日志、以及浏览器浏览记录中) (2)post发送的数据更大(get有url长度限制) (3)post能发送更多的数据类型(get只能发送ASCII字符) (4)post比get慢,get和post请求的过程中GET产生一个T

    2024年01月22日
    浏览(40)
  • SpringBoot知识点复习

    约定优于配置:Spring Boot鼓励开发人员遵循一组默认约定,减少配置的复杂性。 自动配置:Spring Boot可以自动配置应用程序,根据项目的依赖和需要自动配置Spring特性。 嵌入式Web服务器:Spring Boot提供了内嵌的Web服务器,如Tomcat、Jetty和Undertow,使Web应用程序的部署变得简单。

    2024年02月05日
    浏览(42)
  • WPF复习知识点记录

    由于近几年主要在做Web项目,客户端的项目主要是以维护为主,感觉对于基础知识的掌握没有那么牢靠,趁着这个周末重新复习下WPF的相关知识。 文章内容主要来自大佬刘铁锰老师的经典著作《深入浅出WPF》。 因为是复习,所以知识内容不会一一记录,如有需要了解更多可

    2024年02月11日
    浏览(40)
  • Pytorch基础知识点复习

    本篇博客是本人对pytorch使用的查漏补缺,参考资料来自 深入浅出PyTorch,本文主要以提问的方式对知识点进行回顾,小伙伴们不记得的知识点可以查一下前面的教程哦。   现在并行计算的策略是 不同的数据分布到不同的设备中,执行相同的任务(Data parallelism) 。   它的逻

    2024年01月20日
    浏览(40)
  • Web期末复习知识点

    下载Tomcat :前往Apache Tomcat官方网站(https://tomcat.apache.org)下载适合您操作系统的Tomcat版本。  安装Tomcat :解压下载的Tomcat压缩文件到您选择的目录。例如,将Tomcat解压到/opt/tomcat。 配置环境变量(可选) :如果需要在任何位置启动Tomcat,可以将Tomcat的bin目录添加到系统的

    2024年02月04日
    浏览(45)
  • 离散数学---期末复习知识点

    一、 数理逻辑   [ 复习知识点 ] 1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),命题(非真既假的陈述句),复合命题(由简单命题通过联结词联结而成的命题) 2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式

    2024年02月08日
    浏览(73)
  • java基础知识点复习①

    java是一门开源的面向对象的编程语言,具有面向对象的封装、继承、多态的特点。 封装:将类的某些信息隐藏起来,只提供特定的方法来访问或修改这些隐藏信息,从而防止直接操作类中的某些属性。是通过访问权限修饰符来实现封装的,public——protected——default——pri

    2023年04月22日
    浏览(48)
  • Zookeeper 复习知识点(更新中)

    Zookeeper 是开源的,是一个基于观察者模式设计的分布式服务管理框架,负责存储和管理大家都关心的数据,然后接收观察者的注册,一旦这些数据发生变化,Zookeeper 负责通知已经注册的观察者。Zookeeper 相当于文件系统 + 通知机制。 1.1 Zookeeper 特点 集群架构 :Zookeeper 通常由

    2024年01月18日
    浏览(36)
  • Java集合基础知识点复习

    主要分为两类: 第一个是Collection 属于单列集合,第二个是Map 属于双列集合在Collection中有两个子接口List和Set。在我们平常开发的过程中用的比较多像list接口中的实现类ArrarList和LinkedList。 在Set接口中有实现类HashSet和TreeSet。 在map接口中有很多的实现类,平时比较常见的是

    2024年04月08日
    浏览(56)
  • Java期末复习——知识点+题库

    简单、面向对象、平台无关、多线程、动态 Java 所有的组成部分都需要名字。类名、变量名以及方法名都被称为标识符。 关于 Java 标识符,有以下几点需要注意: 所有的标识符都应该以字母(A-Z 或者 a-z),美元符($)、或者下划线(_)开始 首字符之后可以是字母(A-Z 或者

    2024年02月02日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包