文心一言 VS 讯飞星火 VS chatgpt (32)-- 算法导论5.2 4题

这篇具有很好参考价值的文章主要介绍了文心一言 VS 讯飞星火 VS chatgpt (32)-- 算法导论5.2 4题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

四、利用指示器随机变量来解如下的帽子核对问题(hat-heck problem):n位顾客,他们每个人给餐厅核对帽子的服务生一顶帽子。服务生以随机顺序将帽子归还给顾客。请问拿到自己帽子的客户的期望数是多少?

文心一言:

我们可以将这个问题转化为求解在指示器随机变量基础上的期望值。

已知有n位顾客。

已知服务生以随机顺序将帽子归还给顾客。

根据指示器随机变量的定义,I(i)表示第i位顾客是否拿到了自己的帽子,其值为1表示拿到,0表示未拿到。

因为服务生归还帽子是随机的,所以每一位顾客拿到自己帽子的概率都是1/n。

根据期望值的定义,拿到自己帽子的客户的期望数为:

E[I(1)] + E[I(2)] + … + E[I(n)] = n × (1/n) = 1

所以,拿到自己帽子的客户的期望数为1。

文心一言 VS 讯飞星火 VS chatgpt (32)-- 算法导论5.2 4题

讯飞星火:

假设服务生将帽子归还给顾客的顺序是随机的,那么拿到自己帽子的期望数可以通过以下步骤计算:

1.计算所有可能的归还顺序的数量。对于n位顾客,有n!种不同的归还顺序。

2.对于每一种归还顺序,计算有多少种情况是服务生在归还帽子时先归还了某个顾客的帽子。设第i个顾客先被归还帽子的情况数为A(i),则A(i) = (n-i+1)!/[i!*(n-i)!]。

3.对于每一种归还顺序,计算有多少种情况是服务生在归还帽子时先归还了某个顾客的帽子,并且该顾客拿到了自己的帽子。设第i个顾客先被归还帽子且拿到自己的帽子的情况数为B(i),则B(i) = A(i)[n-i+1]!/[i!(n-i)!]。

4.对于每一种归还顺序,计算拿到自己帽子的期望数。设拿到自己帽子的期望数为E,则E = Σ[B(i)]。

因此,我们只需要计算出A(i)和B(i)即可求解E。具体地,可以使用递推公式计算A(i):

A(i) = (n-i+1)!/[i!(n-i)!]
A(0) = 1
A(i) = A(i-1)
(n-i+1)/[i*(n-i)]

同样地,可以使用递推公式计算B(i):

B(i) = [n-i+1]!/[i!(n-i)!]A(i)[n-i+1]!/[i!(n-i)!]
B(0) = 1
B(i) = B(i-1)[n-i+1]!/[i!(n-i)!]/[n-i+1]!/[i!*(n-i)!]

最后,将所有的B(i)相加即可得到拿到自己帽子的期望数E:

E = Σ[B(i)] = Σ[B(0)]Σ[B(1)]Σ[B(n-1)]
= [n
(n-1)*…21]^(1/n) * [1(n-1)/(n-1)(n-1)] * [2(n-2)/(n-2)(n-2)] * … * [(n-1)(n-1)/(n-1)(n-1)]
= n^(1/n) * (n-1)(n-2)/(n-2)(n-2)
= n^(1/n) * (n-1)^((n-2)/(n))

文心一言 VS 讯飞星火 VS chatgpt (32)-- 算法导论5.2 4题

华为盘古:

这个问题可以使用指示器随机变量来解决,即每次顾客归还帽子时,服务生会记录下帽子的序号,然后将帽子分配给下一位顾客。在每次交换帽子时,服务生会使用指示器随机地将顾客帽子上的序号与自己的帽子上的序号进行比较,如果相同,则将顾客帽子放入篮子中,如果没有相同,则随机地将顾客帽子放在一边。

在这种情况下,可以使用以下不等式:

n = ( x + μ ) / 2 n = (x + μ)/2 n=(x+μ)/2

其中,x是顾客帽子的序号,μ是帽子的稀有度。这个不等式表明,顾客归还帽子的次数与顾客帽子的序号的平方成正比,即归还帽子的次数与顾客帽子的序号的平方成正比。

因此,我们可以计算每个顾客的期望数:

y = ( x + μ ) / 2 y = (x + μ)/2 y=(x+μ)/2

其中,y是顾客的期望值,也就是他们希望收到帽子的序号。

通过这种方式,我们可以计算每个顾客的期望值,并将它们代入不等式中,以解决帽子核对问题。

文心一言 VS 讯飞星火 VS chatgpt (32)-- 算法导论5.2 4题

360智脑:

假设有n个顾客,令X为拿到自己帽子的顾客数量,Y为拿到其他帽子的顾客数量,则X+Y=n。又因为每个顾客只拿一次帽子,所以X和Y都是独立同分布的伯努利随机变量,记其概率质量函数为f(x,y) = (1/2)^(x+y)*exp(-(x+y)/2).

要求期望数,即E(X),则可以将X看作在伯努利试验中成功的次数,代入上式得到E(X) = E(Y) + E(X|Y=0)(当Y>0时)+E(X|Y=1)(当Y=0时)。由于X和Y是独立的,因此可以分别计算它们的期望数并相加,得到E(X) = nP(X=0) + P(X=1)(1-P(X=0))。其中,P(X=0) = n*(1/2)^(n-1),P(X=1) = n*(1/2)^(n-1),且注意到如果某个顾客拿到了他想要的帽子,那么其他人就没有机会了,因此X和Y的期望值相等。

文心一言 VS 讯飞星火 VS chatgpt (32)-- 算法导论5.2 4题

chatglm:

文心一言 VS 讯飞星火 VS chatgpt (32)-- 算法导论5.2 4题

文心一言 VS 讯飞星火 VS chatgpt (32)-- 算法导论5.2 4题

chatgpt:

设顾客 i i i的帽子编号为 i i i,令指示器随机变量 X i X_i Xi表示顾客 i i i拿到自己的帽子,则
X i = { 1 , 如果顾客 i 拿到了自己的帽子 0 , 否则 X_i=\begin{cases} 1, & \text{如果顾客}i\text{拿到了自己的帽子}\\ 0, & \text{否则} \end{cases} Xi={1,0,如果顾客i拿到了自己的帽子否则
p i p_i pi表示服务生将顾客 i i i的帽子还给他的概率。由于服务生将帽子以随机顺序归还,因此 p i = 1 n p_i=\frac{1}{n} pi=n1

根据期望值的线性性,我们有拿到自己帽子的客户的期望数为
\begin{align*}
E(\sum_{i=1}^n X_i)&=\sum_{i=1}^n E(X_i)\
&=\sum_{i=1}^n p_i\
&=\frac{1}{n}\sum_{i=1}^n 1\
&=\boxed{1}
\end{align*}

因此,拿到自己帽子的客户平均有一个人。

文心一言 VS 讯飞星火 VS chatgpt (32)-- 算法导论5.2 4题文章来源地址https://www.toymoban.com/news/detail-472805.html

到了这里,关于文心一言 VS 讯飞星火 VS chatgpt (32)-- 算法导论5.2 4题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 文心一言 VS 讯飞星火 VS chatgpt (66)-- 算法导论6.5 5题

    在使用以下循环不变量时,HEAP-INCREASE-KEY的正确性可以得到分析: 循环不变量:在算法的第4~6行 while循环每次迭代开始的时候,子数组 A[1…A.heap-size]要满足最大堆的性质。 这个循环不变量是在调用 HEAP-INCREASE-KEY 之前被满足的。因此,在这个函数内部,我们可以假设 A[1…A.

    2024年02月15日
    浏览(36)
  • 文心一言 VS 讯飞星火 VS chatgpt (123)-- 算法导论10.4 4题

    在计算机科学中,左孩子右兄弟表示法是一种用于表示树状结构的方法,其中每个节点都有两个指针:一个指向其第一个孩子(左孩子),另一个指向其下一个兄弟(右兄弟)。对于一个有根树,我们可以使用一个数组来表示它,其中每个索引对应一个节点,每个节点包含两

    2024年02月08日
    浏览(43)
  • 文心一言 VS 讯飞星火 VS chatgpt (55)-- 算法导论6.3 1题

    文心一言 VS 讯飞星火 VS chatgpt (55)-- 算法导论6.3 1题 下面是 BUILD-MAX-HEAP 在数组 A = (5, 3, 17, 10, 84, 19, 6, 22, 9) 上的操作过程: 1.创建一个空堆,将数组中的第一个元素 5 作为根节点,将其加入堆中。 2.将数组中的第二个元素 3 与其子节点 5 比较,由于 3 小于等于 5,因此不需

    2024年02月12日
    浏览(38)
  • 文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题

    文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题 HEAP-EXTRACT-MAX 是堆排序算法中的一部分,用于从堆中提取最大值并保持堆的性质。下面是在堆 A=(15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1) 上执行 HEAP-EXTRACT-MAX 操作的过程: 1.初始化堆的根节点为最大值。在本例中,根节点为 15。 2.将

    2024年02月16日
    浏览(34)
  • 文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题

    文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题 在 HEAP-INCREASE-KEY 的第 5 行交换操作中,我们可以通过利用 INSERTION-SORT 内循环部分的思想来进行优化,从而只用一次赋值完成这一交换操作。 通常,在 HEAP-INCREASE-KEY 的第 5 行交换操作中,我们需要通过三次赋值来交换 k

    2024年02月14日
    浏览(41)
  • 文心一言 VS 讯飞星火 VS chatgpt (28)-- 算法导论5.1 3题

    可以使用贝叶斯公式来计算无偏的结果。假设我们进行了n次试验,其中BIASED-RANDOM以概率p输出1,以概率1-p输出0。设N0为输出0的次数,N1为输出1的次数,则有N0+N1=n。根据贝叶斯公式,可以得到: p(N0, N1|p) = p(N0, N1, p) / p(p) 其中,p(N0, N1, p)表示在n次试验中,N0次试验输出0,N1次

    2024年02月07日
    浏览(43)
  • 文心一言 VS 讯飞星火 VS chatgpt (27)-- 算法导论5.1 2题

    假设我们有一个伪随机数生成器,可以生成在[0,1)范围内的随机数。那么我们可以使用以下算法实现从一个[a, b]范围内的随机数: 1.首先生成一个随机数r,在[0,1)范围内。 2.检查r是否大于a。如果是,则重复步骤1,直到r小于等于a。 3.计算x = (b-a) * r + a。x就是在[a, b]范围内的随

    2024年02月07日
    浏览(41)
  • 文心一言 VS 讯飞星火 VS chatgpt (76)-- 算法导论7.3 1题

    在分析算法的性能时,期望运行时间是一个重要的指标,它描述了算法在平均情况下的表现。期望运行时间考虑了所有可能的情况,包括输入数据的分布和随机性等因素。 对于随机化算法,最坏情况下的运行时间可能会非常糟糕,但是这种最坏情况在实际应用中出现的概率非

    2024年02月12日
    浏览(41)
  • 文心一言 VS 讯飞星火 VS chatgpt (40)-- 算法导论5.4 4题

    为了解决这个问题,我们需要先计算出所有可能的生日组合数,然后计算出其中生日相同的组合数。 已知需要邀请的人数为:23人 根据组合数公式,可计算出所有可能的生日组合数: 2.58520167*10^{22} 根据生日相同的组合数公式,可计算出其中生日相同的组合数: 2.4676925e+22 所

    2024年02月09日
    浏览(50)
  • 文心一言 VS 讯飞星火 VS chatgpt (89)-- 算法导论8.3 2题

    在Go语言中,以下排序算法是稳定的: 插入排序 归并排序 而以下的排序算法是不稳定的: 堆排序 快速排序 要使任何排序算法都稳定,我们可以在排序时记录每个元素的原始索引。这种方法的额外空间开销是O(n),时间开销则是O(n log n)。这是因为我们需要额外的空间来存储索

    2024年02月09日
    浏览(28)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包