∫ 0 π 1 − sin x d x \int _{0}^{\pi}\sqrt{1-\sin x}\,{\rm d}x ∫0π1−sinxdx
这个题关键在于如何处理根号。若根号内能写成完全平方的形式,是再好不过了。
1
−
sin
x
1-\sin x
1−sinx
=
sin
2
x
2
+
cos
2
x
2
−
2
sin
x
2
cos
x
2
=\sin^2{\frac{x}{2}}+\cos^2{\frac{x}{2}}-2\sin {\frac{x}{2}}\cos{\frac{x}{2}}
=sin22x+cos22x−2sin2xcos2x
=
(
sin
x
2
−
cos
x
2
)
2
=(\sin{\frac{x}{2}}-\cos{\frac{x}{2}})^{2}
=(sin2x−cos2x)2
则原式
=
∫
0
π
∣
sin
x
2
−
cos
x
2
∣
d
x
=\int_{0}^{\pi}\vert \sin{\frac{x}{2}}-\cos{\frac{x}{2}} \rvert\,{\rm d}x
=∫0π∣sin2x−cos2x∣dx
=
∫
0
π
2
(
cos
x
2
−
sin
x
2
)
d
x
+
∫
π
2
π
(
sin
x
2
−
cos
x
2
)
d
x
=\int_{0}^{\frac{\pi}{2}}(\cos {\frac{x}{2}}-\sin{\frac{x}{2}} )\,{\rm d}x+\int_{\frac{\pi}{2}}^{\pi}(\sin{\frac{x}{2}}-\cos{\frac{x}{2}})\,{\rm d}x
=∫02π(cos2x−sin2x)dx+∫2ππ(sin2x−cos2x)dx
( 2 sin x 2 ) ′ = cos x 2 , ( − 2 cos x 2 ) ′ = sin x 2 (2\sin{\frac{x}{2}})^{'}=\cos{\frac{x}{2}},(-2\cos{\frac{x}{2}})^{'}=\sin{\frac{x}{2}} (2sin2x)′=cos2x,(−2cos2x)′=sin2x文章来源:https://www.toymoban.com/news/detail-473076.html
原式
=
(
2
sin
x
2
+
2
cos
x
2
)
∣
0
π
2
+
(
−
2
cos
x
2
−
2
sin
x
2
)
∣
π
2
π
=(2\sin{\frac{x}{2}}+2\cos{\frac{x}{2}})|_{0}^{\frac{\pi}{2}}+(-2\cos\frac{x}{2}-2\sin{\frac{x}{2}})|_{\frac{\pi}{2}}^{\pi}
=(2sin2x+2cos2x)∣02π+(−2cos2x−2sin2x)∣2ππ
=
2
2
−
2
−
[
(
0
+
2
)
−
2
2
]
=2\sqrt{2}-2-[(0+2)-2\sqrt{2}]
=22−2−[(0+2)−22]
=
4
(
2
−
1
)
=4(\sqrt{2}-1)
=4(2−1)文章来源地址https://www.toymoban.com/news/detail-473076.html
到了这里,关于武忠祥老师每日一题||定积分基础训练(六)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!