图像形状及数量识别(matlab实现)

这篇具有很好参考价值的文章主要介绍了图像形状及数量识别(matlab实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

米粒形状识别

概述

基于视觉的沙粒形状识别系统模型需要借助计算机对特征的信息处理和分析,实现像人一样的智能识别,所以通常模式识别与机器学习存在着一定的联系。机器识别技术的实现主要分为以下几个步骤:
(1) 获取图像数据。
(2) 数据预处理。
(3) 图像特征提取。
(4) 设置分类器完成分类。
基本流程为:
图像形状及数量识别(matlab实现)


一、图像处理

1.图像去噪

对采集到的图像主要预处理方式为降噪处理,去除冗余信息,以提高后续特征提取的效率和准确率,使研究对象更加突出。一般采用平滑滤波来对图像进行降噪处理,平滑滤波处理是能够在保证图像细节的基础上对图像的噪声进行抑制和去除,一般对图像的预处理都采用平滑滤波的方式。图像采用中值滤波法进行平滑滤波。
图像形状及数量识别(matlab实现)

2.图像锐化

图像锐化是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。图像锐是为了突出图像上地物的边缘、轮廓,或某些线性目标要素的特征。这种滤波方法提高了地物边缘与周围像元之间的反差,因此也被称为边缘增强。图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。
图像形状及数量识别(matlab实现)

3.边缘提取

边缘检测是图形图像处理、计算机视觉和机器视觉中的一个基本工具,通常用于特征提取和特征检测,旨在检测一张数字图像中有明显变化的边缘或者不连续的区域,在一维空间中,类似的操作被称作步长检测。边缘是一幅图像中不同屈原之间的边界线,通常一个边缘图像是一个二值图像。边缘检测的目的是捕捉亮度急剧变化的区域。
Sobel算子结合了高斯平滑和微分求导。它是一阶导数的边缘检测算子,使用卷积核对图像中的每个像素点做卷积和运算,然后采用合适的阈值提取边缘。Soble算子有两个卷积核,分别对应x与y两个方向。
图像形状及数量识别(matlab实现)

4.特征匹配

在对图片进行颜色提取和形状特征提取后,根据图片中轮廓信息以及颜色、形状信息对圆形米粒以及椭圆形米粒进行识别,并计算每种米粒的数量。
图像形状及数量识别(matlab实现)
图像形状及数量识别(matlab实现)

二、matlab实现

以下是一个简单的流程:

读取图像:使用imread函数读取米粒图像。

img = imread('rice.png');

预处理图像:对图像进行预处理,例如灰度化、二值化、滤波等操作。

gray_img = rgb2gray(img);  % 转换为灰度图像
bw_img = imbinarize(gray_img);  % 二值化
filter_img = medfilt2(bw_img, [3, 3]);  % 中值滤波

分割图像:将图像中的米粒分割出来,可以使用形态学操作、边缘检测等方法。

se = strel('disk', 5);  % 创建一个半径为5的圆形结构元素
open_img = imopen(filter_img, se);  % 开运算去除小物体
bw_img2 = edge(open_img, 'canny');  % 边缘检测
se2 = strel('disk', 3);  % 创建一个半径为3的圆形结构元素
dilate_img = imdilate(bw_img2, se2);  % 膨胀处理
region_img = regionprops(dilate_img, 'Area', 'Centroid');  % 获取连通区域属性

统计米粒数量:统计米粒的数量,可以根据分割出来的连通区域数量来估算米粒数量。

num_rice = length(region_img);  % 统计米粒数量

三、总程序代码

代码如下(示例):

clc
clear all
close all
A1 = imread('./1.jpg'); % 读入图像
A1=rgb2gray(A1);    %将彩色图转化为二维的灰度图
I1=im2double(A1);
a=zeros(1,9);
c=zeros(1,9);
I5=I1;
I2=I1;
[row,col]=size(I1);  
for i=2:row-1
    for j=2:col-1
        a=[I2(i,j),I2(i-1,j),I2(i+1,j),I2(i,j-1),I2(i,j+1),I2(i-1,j-1),I2(i-1,j+1),I2(i+1,j-1),I2(i+1,j+1)];
        b=sort(a);

        I5(i,j)=b(5);

    end
end %%
close all
clear all
clc

img=imread('./1.jpg');

I = rgb2gray(img);
% Sobel锐化   
% g(i,j)=[dx(i,j)^2+dy(i,j)^2]^(1/2);
% dx = [-1 -2 -1;0 0 0;1 2 1]; dy = [-1 0 1;-2 0 2;-1 0 1];

% 输入原始图像
im = double(I);

H1 = [-1 -2 -1;0 0 0;1 2 1]; dx = filter2(H1,im);
H2 = [-1 0 1;-2 0 2;-1 0 1]; dy = filter2(H2,im);

im2 = sqrt(dx.^2 + dy.^2); % .^2:矩阵中的每个元素都求平方
figure,imshow(uint8(im2));title('Sobel锐化所得的图像');

im3 = im + sqrt(dx.^2 + dy.^2)*0.1;
figure,imshow(uint8(im3));title('锐化所得的图像');


BW5=edge(uint8(im3),'canny'); %用canny算子进行边缘检测

se90=strel('line',3,3);
se0=strel('line',3,3);
BW2=imdilate(BW5,[se90,se0]);
figure,imshow(BW2);

[labeled,numObjects] = bwlabel(BW2,4);
BW3=imfill(BW2,'holes');
[label,num]=bwlabel(BW3,4)
figure,imshow(BW3);
figure;

subplot(1,2,1), imshow(I);title('原图');subplot(1,2,2), imshow(BW5);title('canny');
annotation('textbox',[.9 .5 .1 .2],num,'EdgeColor','none')
figure;
subplot(1,2,1),imshow(I1),title('原图','fontsize',16);       
subplot(1,2,2),imshow(I5),title('中值滤波','fontsize',16);    

结语

需要注意的是,以上代码只是一个简单的示例,具体的实现方法和参数设置需要根据具体的图像和应用场景来调整和优化文章来源地址https://www.toymoban.com/news/detail-473267.html

到了这里,关于图像形状及数量识别(matlab实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 6 图像处理实现螺纹识别案例(matlab程序)

      2. 代码 clear;clc;close all I=imread(\\\'luowen1.bmp\\\');   %读取螺纹图片 try     I=rgb2gray(I);         %如果是RGB图,则转换成灰度图 catch end figure imshow(I) title(\\\'原图(半边螺纹)\\\') for K=1:15     I=wiener2(I,[5 5]);   %通过滤波15次把多余点滤除 end [m,n]=size(I); I=edge(I,\\\'canny\\\');       %通过边缘检测

    2024年02月12日
    浏览(41)
  • MATLAB实现图像处理:图像识别、去雨、去雾、去噪、去模糊等等(附上20个完整仿真源码)

    图像处理是计算机视觉领域的重要研究方向,MATLAB是一种功能强大的数学计算软件,可以用于图像处理和分析。下面是一些简单的MATLAB图像处理代码示例,包括图像增强、边缘检测、形态学处理、特征提取等。 图像增强是指通过一些技术手段,使图像的某些特征更加突出,从

    2023年04月17日
    浏览(53)
  • 【图像处理】从点云数据中提取边界(识别和追踪)(Matlab代码实现)

     👨‍🎓 个人主页: 研学社的博客   💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉

    2024年02月14日
    浏览(39)
  • 【MATLAB图像处理实用案例详解(16)】——利用概念神经网络实现手写体数字识别

    手写体数字属于光学字符识别(Optical Character Recognition,OCR)的范畴,但分类的分别比光学字符识别少得多,主要只需识别共10个字符。 使用概率神经网络作为分类器,对64*64二值图像表示的手写数字进行分类,所得的分类器对训练样本能够取得100%的正确率,训练时间短,比

    2024年02月06日
    浏览(43)
  • 【裂缝识别】无人机图像处理公路裂缝检测研究与实现【含Matlab源码 1730期】

    ✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。 🍎个人主页:海神之光 🏆代码获取方式: 海神之光Matlab王者学习之路—代码获取方式 ⛳️座右铭:行百里者,半于九十。 更多Matlab仿真内容点击👇 Matlab图像处理(进阶版) 路径规划

    2024年01月23日
    浏览(43)
  • 【工程应用九】再谈基于离散夹角余弦相似度指标的形状匹配优化(十六角度量化+指令集加速+目标只有部分在图像内的识别+最小外接矩形识别重叠等)

    继去年上半年一鼓作气研究了几种不同的模版匹配算法后,这个方面的工作基本停滞了有七八个月没有去碰了,因为感觉已经遇到了瓶颈,无论是速度还是效率方面,以当时的理解感觉都到了顶了。年初,公司业务惨淡,也无心向佛,总要找点事情做一做,充实下自己,这里

    2024年03月19日
    浏览(50)
  • 卷积神经网络每一层输出的形状、通道数、特征图数量以及过滤器数量的理解与计算。

    参考: http://t.csdn.cn/8ApfD ‘http://t.csdn.cn/ZmEOJ 核心观点:  前一层的通道数(特征图数量),决定这一层过滤器的深度; 这一层过滤器的数量,决定这一层输出的通道数(特征图数量) 神经网络每一层输出矩阵的形状一般是4个维度[y1, y2, y3, y4] y1 通常是batch_size,就是每一圈丢

    2023年04月09日
    浏览(50)
  • Matlab使用BP和LVQ神经网络、图像处理技术三种方法实现人脸识别(附上完整仿真源码+数据)

    人脸识别是一种常见的生物特征识别技术,广泛应用于人脸门禁、人脸支付等领域。在人脸识别中,神经网络和图像处理技术是两种常用的方法。本文将介绍如何使用Matlab实现人脸识别,包括BP神经网络、LVQ神经网络和图像处理技术。 首先,我们将介绍BP神经网络的人脸识别

    2024年02月13日
    浏览(44)
  • matlab:图像识别

    Matlab是一款非常优秀的图像处理软件,其图像识别功能也非常强大。下面详细介绍一下Matlab图像识别的相关内容。 Matlab图像识别的基本原理是通过对图像进行数字处理和分析,从中提取出有用的信息,识别出图像中的对象。这个过程可以分为以下几步: 图像预处理:包括图

    2024年02月09日
    浏览(24)
  • Matlab图像处理-模式识别

    模式识别 模式识别就是用计算的方法根据样本的特征将样本划分到一定的类别中去。模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读,把环境与客体统称为“模式”。模式识别以图像处理与计算机视觉、语音语言信息处理、脑网络组、类脑智能等为主要

    2024年02月07日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包