使用Optuna进行PyTorch模型的超参数调优

这篇具有很好参考价值的文章主要介绍了使用Optuna进行PyTorch模型的超参数调优。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Optuna是一个开源的超参数优化框架,Optuna与框架无关,可以在任何机器学习或深度学习框架中使用它。本文将以表格数据为例,使用Optuna对PyTorch模型进行超参数调优。

使用Optuna进行PyTorch模型的超参数调优

Optuna可以使用python pip安装,如pip install Optuna。也可以使用conda install -c conda-forge Optuna,安装基于Anaconda的python发行版。

正如您所看到的,使用基本python语言的几行代码,您可以为任何神经网络创建并执行试验。

OPUTNA有一个简单的基于API的实现,允许用户定义要优化的度量和要调查的超参数空间。只需要调用一个函数来执行优化过程。它支持广泛的优化算法,包括随机搜索、网格搜索和贝叶斯优化。并且它可以支持连续、整数和分类超参数的优化,以及具有复杂依赖关系的超参数。

使用Optuna进行PyTorch模型的超参数调优

Oputna的简单介绍

让我们先了解Oputna框架的基本术语,

Trial:-Trial是评估一个目标函数的过程。该对象传递给目标函数,提供获取参数建议、管理试用状态和设置/获取试用自定义属性的接口。

Study:一个Study对应于一个优化任务,即一组试验。该对象提供了运行新试验、访问试验历史、设置/获取研究本身的用户定义属性的接口。

Study中包含了一个重要的create_study方法,它是创建新的Study对象方法重要参数如下:

  • Objective :目标函数是Optuna优化超参数选择的核心。虽然暴力网格搜索也是寻找最小化目标函数,但它实际上并没有考虑到超参数的哪种组合效果好或不好。
  • Sampler :是一个采样器对象,实现了值建议的后台算法。如果指定None,则单目标优化时使用TPESampler,多目标优化时使用NSGAIISampler。
  • Pruner :是一个修剪器对象,决定提前停止没有希望的试验。如果指定None,则使用MedianPruner作为默认值。
  • Study_name:研究的名称。如果此参数设置为None,则自动生成唯一的名称。
  • Directions : 多目标优化过程中的方向序列。

Pytorch模型

为了适应Oputna的超参数是搜素,我们需要一个函数来根据不同的参数返回不同的Pytorch模型,大概是这个样子的:

使用Optuna进行PyTorch模型的超参数调优

我们几个超参数包括,In_Features ,N_Layers ,DropOut 和N_ouput

而trial 是Oputna传递的Trial 实现。

目标函数

目标函数由我们要优化的超参数组成。在我们的例子中,除了上面的模型的超参数外,还需要优化learning_rate、weight_decay和不同的优化器,所以定义如下:

使用Optuna进行PyTorch模型的超参数调优

训练循环

训练循环是Optuna中最重要的组成部分。在下面的例子中,我们对定义目标函数的参数字典进行参数化。

使用Optuna进行PyTorch模型的超参数调优

Study

正如我们上面所说的,Optuna研究在数据集中进行了多例试验,我们使用损失函数为RMSE,所以方向是最小化RMSE。在这个中使用TPESampler.Tree-structured估计器。

使用Optuna进行PyTorch模型的超参数调优

结果展示

由于数据集非常小,试验在25个循环内结束。以下是细节。下面给出了最佳试验和超参数组合,将RMSE最小化到0.058。

 Study statistics: 
   Number of finished trials:  25
   Number of pruned trials:  0
   Number of complete trials:  25
 Best trial: FrozenTrial(number=18, state=TrialState.COMPLETE, values=[0.058233041420927334], datetime_start=datetime.datetime(2023, 5, 21, 5, 9, 43, 683621), datetime_complete=datetime.datetime(2023, 5, 21, 5, 10, 7, 935450), params={'learning_rate': 0.0010084133367699304, 'optimizer': 'Adam', 'weight_decay': 0.00013535005248600755, 'n_layers': 2, 'dropout': 0.2, 'n_units_l0': 7, 'n_units_l1': 6}, user_attrs={}, system_attrs={}, intermediate_values={}, distributions={'learning_rate': FloatDistribution(high=0.01, log=True, low=0.001, step=None), 'optimizer': CategoricalDistribution(choices=('Adam', 'RMSprop', 'SGD')), 'weight_decay': FloatDistribution(high=0.001, log=True, low=0.0001, step=None), 'n_layers': IntDistribution(high=4, log=False, low=2, step=1), 'dropout': FloatDistribution(high=0.5, log=False, low=0.1, step=0.1), 'n_units_l0': IntDistribution(high=8, log=False, low=2, step=1), 'n_units_l1': IntDistribution(high=7, log=False, low=2, step=1)}, trial_id=18, value=None)
   Value:  0.058233041420927334
 Best Trail Params: 
     learning_rate: 0.0010084133367699304
     optimizer: Adam
     weight_decay: 0.00013535005248600755
     n_layers: 2
     dropout: 0.2
     n_units_l0: 7
     n_units_l1: 6

我们还可以通过下面的函数进行结果的可视化

optuna.visualization.plot_optimization_history(study)

使用Optuna进行PyTorch模型的超参数调优

optuna.visualization.plot_param_importances(study)

使用Optuna进行PyTorch模型的超参数调优

optuna.visualization.plot_slice(study)

使用Optuna进行PyTorch模型的超参数调优

optuna.visualization.plot_parallel_coordinate(study)

使用Optuna进行PyTorch模型的超参数调优

以上就是使用optuna调优Pytorch模型的全部过程,本文的源代码在这里,并且有完整的运行结果,如果你想自己调整或者学习,请看这个连接

https://avoid.overfit.cn/post/86d01db7af8845b88ff1c753e7200a50

作者:Ashish Verma文章来源地址https://www.toymoban.com/news/detail-473422.html

到了这里,关于使用Optuna进行PyTorch模型的超参数调优的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • JVM 8 调优指南:如何进行JVM调优,JVM调优参数

    这篇文章将详细介绍如何进行JVM 8调优,包括JVM 8调优参数及其应用。此外,我将提供12个实用的代码示例,每个示例都会结合JVM启动参数和Java代码。 本文已收录于,我的技术网站 ddkk.com,有大厂完整面经,工作技术,架构师成长之路,等经验分享 JVM调优是指通过调整Java虚拟

    2024年01月21日
    浏览(55)
  • JVM 11 调优指南:如何进行JVM调优,JVM调优参数

    JVM 11的优化指南:如何进行JVM调优,以及JVM调优参数有哪些”这篇文章将包含JVM 11调优的核心概念、重要性、调优参数,并提供12个实用的代码示例,每个示例都会结合JVM调优参数和Java代码 本文已收录于,我的技术网站 ddkk.com,有大厂完整面经,工作技术,架构师成长之路,

    2024年01月16日
    浏览(54)
  • JVM 21 的调优指南:如何进行JVM调优,JVM调优参数

    聊聊关于JVM 21的优化指南。这篇文章将会深入探讨如何进行JVM调优,介绍一些关键的JVM调优参数,并提供12个实用的代码示例。由于篇幅较长,我会分几个部分来详细讲解,之前写的也有33篇系列教程JVM调优实战打击也可以去围观。 JVM(Java虚拟机)调优是一个复杂但重要的任

    2024年01月24日
    浏览(52)
  • optuna,一个好用的Python机器学习自动化超参数优化库

    🏷️ 个人主页 :鼠鼠我捏,要死了捏的主页  🏷️ 付费专栏 :Python专栏 🏷️ 个人学习笔记,若有缺误,欢迎评论区指正   超参数优化是机器学习中的重要问题,它涉及在训练模型时选择最优的超参数组合,以提高模型的性能和泛化能力。Optuna是一个用于自动化超参数优

    2024年02月20日
    浏览(46)
  • 模型调优:验证集的作用(就是为了调整超参数)

    一句话总结:验证集的作用就是为了调整超参数 【超参数的值不是学习出来的】:大多数机器学习算法都有超参数,可以设置来控制算法行为。超参数的值不是通过学习算法本身学习出来的。 【超参数如果学习太难优化】:有时一个选项被设为学习算法不用学习的超参数,

    2023年04月08日
    浏览(47)
  • Pytorch迁移学习使用Resnet50进行模型训练预测猫狗二分类

    目录   1.ResNet残差网络 1.1 ResNet定义  1.2 ResNet 几种网络配置  1.3 ResNet50网络结构 1.3.1 前几层卷积和池化 1.3.2 残差块:构建深度残差网络 1.3.3 ResNet主体:堆叠多个残差块 1.4 迁移学习猫狗二分类实战 1.4.1 迁移学习 1.4.2 模型训练 1.4.3 模型预测   深度学习在图像分类、目标检

    2024年02月16日
    浏览(67)
  • 探索人工智能 | 模型训练 使用算法和数据对机器学习模型进行参数调整和优化

    模型训练是指 使用算法和数据对机器学习模型进行参数调整和优化 的过程。模型训练一般包含以下步骤:数据收集、数据预处理、模型选择、模型训练、模型评估、超参数调优、模型部署、持续优化。 数据收集是指为机器学习或数据分析任务收集和获取用于训练或分析的数

    2024年02月12日
    浏览(55)
  • Pytorch迁移学习使用MobileNet v3网络模型进行猫狗预测二分类

    目录 1. MobileNet 1.1 MobileNet v1 1.1.1 深度可分离卷积  1.1.2 宽度和分辨率调整 1.2 MobileNet v2 1.2.1 倒残差模块 1.3 MobileNet v3 1.3.1 MobieNet V3 Block  1.3.2 MobileNet V3-Large网络结构 1.3.3 MobileNet V3预测猫狗二分类问题 送书活动   MobileNet v1 是MobileNet系列中的第一个版本,于2017年由Google团队提

    2024年02月14日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包