离散数学 | 图论 | 欧拉图 | 哈密顿图 | 割点 | 桥(欧拉图和哈密顿图有没有割点和桥?)

这篇具有很好参考价值的文章主要介绍了离散数学 | 图论 | 欧拉图 | 哈密顿图 | 割点 | 桥(欧拉图和哈密顿图有没有割点和桥?)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文主要解决以下几个问题:

1.欧拉图能不能有割点,能不能有桥?

2.哈密顿图能不能有割点,能不能有桥?

首先我们要明白几个定义

割点的定义就是在一个图G中,它本来是连通的,去掉一个点v以后这个图G就不连通了,那么点v就被叫做割点

的定义就是在一个图G中,它本来也是连通的,去掉一条边x以后这个图就不连通了,那么边x就被称为

欧拉图是拥有欧拉闭迹的图。

所谓欧拉闭迹,包含两层概念:“”和“”。

我们先来说什么是,所谓“迹”,就是用一笔可以从一个顶点出发,一直沿着边走,走到另一个顶点停止。在走的过程中,可以有重复的点,但是不能有重复的边。也就是说一个点可以经过两次以上,但是一个边只能走一次。

离散数学 | 图论 | 欧拉图 | 哈密顿图 | 割点 | 桥(欧拉图和哈密顿图有没有割点和桥?)

 如图:从1走到5,最后再回到1,这就是一条迹。

我们再来说什么是“”,所谓闭,就是闭合的意思,也就是说这条迹最后要回到起点,形成一条闭合回路。上图所示的迹也是一条闭迹。

我们可以看到上面画的这个图拥有一套欧拉闭迹,那么他就是一个欧拉图。

如果这个图去掉点3,他就变成不连通的了,那么点3就是一个割点,显然欧拉图是可以有割点的,有割点的图也可以是欧拉图。

那么欧拉图能不能有桥呢?

我们先来试着想一想,欧拉图必须要从一个点出发走回去,边不能重复。那么如果有桥的话,对于两个划分以后的子图,我们为了从一个顶点出发,最后再回到这个顶点,不得不从这个桥走两遍,这显然违背了欧拉图的定义。

离散数学 | 图论 | 欧拉图 | 哈密顿图 | 割点 | 桥(欧拉图和哈密顿图有没有割点和桥?)

 如果需要严谨证明的话,我们可以先由欧拉图得到,在图上任意去掉一条边x,图依然是连通的。如果去掉桥的话,恰恰与欧拉图的定义相违背,自然就证明了欧拉图中不能有桥了。

说完了欧拉图,我们来看哈密顿图。

哈密顿图是具有哈密顿圈的图,哈密顿圈是对于图G而言,它有一个圈,这个圈包含了图G的所有顶点

换言之,如果一个图G,它具有一个能包含所有顶点的圈,那么它具有哈密顿圈,图G也就是哈密顿图了。

显然哈密顿图是有圈的图,有圈的图不论去掉哪个顶点依然是连通的,所以哈密顿图没有割点。有圈的图不论去掉哪条边也依然是连通的,所以哈密顿图也没有桥

换言之,有割点的图一定不是哈密顿图,有桥的图一定不是哈密顿图。

离散数学 | 图论 | 欧拉图 | 哈密顿图 | 割点 | 桥(欧拉图和哈密顿图有没有割点和桥?)

完毕!文章来源地址https://www.toymoban.com/news/detail-473461.html

到了这里,关于离散数学 | 图论 | 欧拉图 | 哈密顿图 | 割点 | 桥(欧拉图和哈密顿图有没有割点和桥?)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【离散数学】4. 图论

    1.数理逻辑 2. 集合论 3. 代数系统 4. 图论 图:点+边+边与点的映射函数 连通性与判别 欧拉图与哈密尔顿图 二分图和平面图与欧拉公式 树及生成树 单源点最短路径:Dijkstra算法 对偶图 4.1.1 图 一个图G是一个三重组 V ( G ) , E ( G ) , Φ G V(G),E(G),Phi_G V ( G ) , E ( G ) , Φ G ​ V(G)是一

    2024年02月10日
    浏览(36)
  • 离散数学——图论

    图的定义 现实世界中许多现象能用某种图形表示,这种图形是由一些点和一些连接两点间的连线所组成。 例子:a,b,c,d 4个篮球队进行友谊比赛。为了表示4个队之间比赛的情况,我们作出图7.1.1的图形。在图中4个小圆圈分别表示这4个篮球队,称之为 结点 。如果两队

    2024年02月02日
    浏览(189)
  • [离散数学]图论

    点相同 边相同 $$ 必要条件 节点数相同 边相同 度数相同节点数目相同 m = C n 2 = 5 ∗ 4 / 2 = 10 m=C_n^2=5*4/2=10 m = C n 2 ​ = 5 ∗ 4/2 = 10 n = 5 n=5 n = 5 由推论 m ≤ 3 n − 6 le3n-6 ≤ 3 n − 6 得 m ≤ 9 le9 ≤ 9 相互矛盾 ∑ d e g ( v i ) = 2 e = 2 V − 2 sum deg(v_i)=2e =2V -2 ∑ d e g ( v i ​ ) = 2 e =

    2024年02月05日
    浏览(200)
  • 头歌实训-离散数学-图论!

    5阶无向完全图的边数为:10 设图 G 有 n 个结点, m 条边,且 G 中每个结点的度数不是 k ,就是 k+1 ,则 G 中度数为 k 的节点数是: n(k+1)-2m 若一个图有5个顶点,8条边,则该图所有顶点的度数和为多少?16 他让输出关联矩阵和邻接矩阵这不简单么? 我是直接摆烂了 输出个球呀

    2024年02月04日
    浏览(68)
  • 离散数学 图论

    1、V,E是一个图 2、零图:图的边集E为空集 3、平凡图: 只有一个结点 的零图 4、平行边: 5、多重图:有平行边的图 6、简单无向图:一个无向图( 没有平行边 )( 没有自回路 ) 7、简单有向图:一个有向图( 没有平行边 )( 没有自回路 ) 8、简单图:( 没有平行边 )( 没有自回路 )的

    2024年02月08日
    浏览(34)
  • 【离散数学】图论

    目录 ​ 无向图与有向图 定义 特殊的图 顶点与边的关联与相邻 无向图和有向图的度数 握手定理 度数列 可图化 最大度和最小度 多重图与简单图 无向完全图与有向完全图  子图与补图 子图 ​ 生成子图​  补图 通路与回路 定义 图的连通性 连通图 可达 几种连通 图的矩阵

    2024年02月13日
    浏览(38)
  • 【离散数学】测试五 图论

    目录 图论  系列文章 1. n层正则m叉树一共有()片树叶。 A. nm B. mn C. mn 正确答案: B 2. 下图是一棵最优二叉树 A. 对 B. 错 正确答案: B 3. 要构造权为1,4,9,16,25,36,49,64,81,100一棵最优二叉树,则必须先构造权为5,9,16,25,36,49,64,81,100一棵最优二叉树

    2024年02月09日
    浏览(36)
  • 离散数学-图论-树(13)

    定义1: 连通无回路的无向图称为无向树,简称树.每个连通分支都是树的无向图称为森林.平凡图称为平凡树.在无向树中,悬挂顶点称为树叶,度数大于或等于2的顶点称为分支点. 定义2 设G=V,E是n阶m条边的无向图,则下面各命题是等价的: (1)G是树 (2)G中任意两个顶点之间存在惟一的

    2024年02月03日
    浏览(42)
  • 离散数学——图论部分

    目录 概述考点: 邻接矩阵,矩阵的计算及含义,完全图,补图,平面图的相关概念,欧拉图,最小生成树,最优二叉树 一.图 ​编辑   二.路和回路 2.1 2.2连通与可达 1.可达 2.连通 三.图的矩阵表示 3.1邻接矩阵 3.2可达性矩阵 3.3无向图的完全关联矩阵 3.4有向图的完全关联矩阵

    2024年02月04日
    浏览(37)
  • 离散数学 | 图论 五色定理证明

    看来一下午终于看懂了,甚至差点睡过去…… 趁热打铁记录一下自己的理解。 任意一个简单的连通平面图 点着色 至多 五色 。 一、 设 G 为一个至少有三个结点的连通平面图,则 G 中必有一个结点 u,u 的度数 deg(u)≤5。 Step1:证明简单连通平面图 G 中一定存在一个顶点,其

    2024年02月01日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包