探索低代码的新形态(D2C、ChatGPT)

这篇具有很好参考价值的文章主要介绍了探索低代码的新形态(D2C、ChatGPT)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

低代码平台的出现,是互联网快速发展的背景下,满足产品快速迭代的实际需求。现在国内外都已经拥有非常多优秀的开源项目(如:lowcode-engine)和成熟的商业产品(如:Mendix 、PowerPlatform)。这篇文章会讨论4个和低代码有关,并且比较值得探索的方向。

由于低代码目前在业界并没有一个被普遍认同的定义,所以我想先描述一下我对于低代码的理解,以便大家能够更容易理解后续内容。

低代码可以分别从业务和技术两个角度去定义并理解它。

业务

基于业务角度,我认为代码平台是:

低代码平台是一种允许用户通过图形界面来设计和构建应用的工具。低代码平台通过简化代码编写(或无代码),使得非开发人员也能够快速地构建和部署应用程序。

人类使用工具的目的在于提高生产效率,低代码作为一种生产应用的工具,不仅用户能通过可视化界面快速地生产应用,还可以减轻开发人员的工作量,解放开发人员的生产力。

通常来说,低代码有两种方案:

方案一:

对具体业务场景做极致地抽象,组件专注于有限的业务场景,对于用户来说,通过配置面板提供的简单的配置项就能完成配置,学习成本低,配置效率高。虽然这个方案的组件只能在有限的业务场景中使用,但只要组件数量够多,也能满足多数场景。

方案二:

基础组件(节点) + 功能复杂的可视化编辑器,通过组件组合和配置,通常能满足绝大多数的场景,但对于用户来说,需要对业务细节足够熟悉,并能抽象并拆解业务过程,存在一定的学习成本,并且在配置过程中所需的时间成本通常更高。

我的选择是方案二,虽然方案一对于用户来说学习成本更低,配置效率更高,但用户和开发人员的利益有时候是冲突的,对于开发人员来说,方案一会随着版本迭代会带来更高的维护成本,而且方案二带来的问题并不是没有解决方案,我提出的解决方案是原子化+模板化,兼顾灵活性和高效率的需求。

技术

基于技术角度,我认为低代码平台是:

低代码平台以数据驱动为核心。基于UI和逻辑这两个维度进行设计,并可拆解为生产数据和消费数据的两个关键环节。

以最常见的低代码场景:在可视化编辑器拖拽配置产生一个H5页面为例,进行进一步说明:

UI

生产数据:用户在可视化编辑器内进行拖拽组件、调整配置等操作生产UI数据(DSL for UI)

消费数据: 根据项目实际需求,通过渲染引擎或出码引擎消费数据,并最终构建出完整的应用。

流程如图所示:

探索低代码的新形态(D2C、ChatGPT)

逻辑

生产数据:用户在可视化编辑器内进行逻辑编排等操作生产逻辑数据(DSL for Logic)

消费数据: 根据项目实际需求,通过逻辑执行引擎或逻辑出码引擎消费数据,并最终构建出完整的应用。

流程如图所示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-avneay6d-1686043284042)(<转存失败,建议直接上传图片文件 >)]

探索低代码的新形态(D2C、ChatGPT)
接下来会根据上述内容去做进一步说明。

全链路

前后端分离已经是业界常见的协作模式,将前端界面与后端的业务逻辑和数据进行分离。前端主要负责用户界面及交互;后端则负责处理业务逻辑、数据存储和提供API接口。开发人员可以更专注于各自领域的开发,研发效率更高,但也因此产生了一些协作成本。

正如前文所述,低代码的最典型应用场景是通过拖拽和配置来构建一个页面。然而,如果我们更深入地思考,将页面拓展至整个应用,通常一个完整的应用会包含前后端。低代码平台并不仅仅局限于在拖拽生成一个页面这样有限的场景中。因此,前文都是尽可能用应用一词来代替页面

这就意味着低代码平台应该从Only for client到One-stop application generation,尝试打通前后端全链路,一站式构建完整的应用。前端开发人员,甚至于产品运营等非开发人员都可以通过较低的学习成本,自助式地生成所需的后台服务、接口;而后台开发人员可以专注于开发更基础的一些后端服务/接口。这不仅提高前端的研发效率,还能减轻后端开发人员的工作量。

和前端的交互逻辑有类似的地方,像是处理逻辑控制的条件判断,监听错误的日志上报等;但后端的业务逻辑通常会更复杂一些,体现在业务逻辑本身就比较复杂,以及对数据的处理,比如说参数校验、数组操作等。如,我需要实现每周优质博主推荐的页面,那么我只需要配置用户登录态校验、参数校验-博主id数组、数据读写、输出数据等逻辑节点即可。当然,还需要实现包括接口自动化测试等其他配套功能。

生产逻辑数据的方案有很多,如Blocky、BPMN、表单等。其中流程图是一种还不错的方案,流程图在处理逻辑编排场景有一定优势,具体可参考低代码平台实践系列(一):逻辑配置概述。逻辑不仅可以是前端的交互逻辑,也可以是后端的业务逻辑。

消费数据的方案同样也有很多,这里提供一种比较容易理解和实现的方案:GraphQL,GraphQL 是一种为 API 设计的查询语言和运行时环境,可用于替代传统的 REST API,可以灵活地获取所需数据并避免过量获取信息。在生产数据的时候,将DSL转换成GraphQL的Schema,再使用这份Schema去获取所需数据。

跨平台

相信大家对目前流行的React、Vue框架都比较熟悉了,Virtual DOM(虚拟DOM)能在保证性能下限的同时,降低维护成本,而且脱离浏览器Real DOM限制的Virtual DOM,让前端不只是局限在浏览器中,在其他平台也能渲染UI。

低代码和React、Vue是有相似之处的,都存在生产和消费数据(Virtual DOM)的过程,以react为例,React为例,react在生产数据,react-dom和react-native就在消费数据。

所以早期设计低代码的架构时,在DSL for UI的制定上,一定程度上就是参考了Virtual DOM的数据结构,并依据Virtual DOM跨平台的理念,尝试为低代码平台实现不同平台的渲染器,如H5、小程序等。渲染器的实现本质上是在消费数据,所以只要能解析DSL并动态地控制UI,理论上所有平台都可以实现自己的渲染器。

D2C

D2C(Design to Code,设计稿生成代码)是一种将设计稿直接转换为代码的技术,它可以帮助设计师和开发人员更高效地进行项目开发。通过使用D2C技术,设计师可以将他们的设计稿(如Sketch、Photoshop、Figma等)直接转换为可用的前端代码。

D2C技术的优点有:

  1. 提高生产效率,通过自动化生成UI层面的代码,缩短开发周期。
  2. 保持一致性,自动生成的代码可以确保设计和开发之间的一致性,减少误差。
  3. 提高协作效率,减少沟通成本。

因此D2C技术能使开发人员在实现UI方面花费更少时间,从而能更专注于交互逻辑的实现。

那么在理想的状态下,页面的UI层面的工作可能完全由设计师负责,交互逻辑层面的工作才由开发人员来开发。正如前文所述,交互逻辑层面是可以在低代码平台中配置出来的,也就是通过可视化编辑器生产来代替开发人员去开发;那么,D2C这个步骤是不是也能应用到低代码平台呢?这样一来,用户不再需要手动地配置 UI,因为设计师在处理设计稿时就已经完成了这一步骤的工作

要实现这套方案,首先要对D2C有基本的认识,但D2C的实现原理比较复杂,包括解析设计稿提取原始结构化数据、设计元素识别、计算布局信息等过程,就不展开说明了,我们只需要理解设计稿是可以通过结构化数据的形式来描述的,本质上是不同数据之间转换和处理的过程。

常规的业务流程是通过可视化编辑器来生产数据的,将D2C技术接入平台后,我们就可以直接上传设计稿,再由D2C技术根据设计稿自动生产出UI数据。新流程如图所示:

探索低代码的新形态(D2C、ChatGPT)

但目前的D2C技术并不完美,在用户不参与的情况下,满足所有场景并生成完全符合预期的UI是比较困难的,所以D2C生产的数据可以作为可视化编辑器的基础数据,提供给用户做进一步地调整。

P2C

P2C(PRD to Code,产品需求文档生成代码)。这是一种更加激进的技术,通过PRD就可以直接生成应用。

本质上是在有限的场景下通过和AI对话(如ChatGPT)或者通过NLP识别生产DSL,但并不是说在PRD所描述的所有内容都能被理解,同时为了帮助AI进行理解,通常有比较严格PRD规范,对PD(Product Design,产品策划人员)的要求更高。也就说,目前还不具备解决所有场景的能力。

正如我在D2C所说,D2C技术的接入改变了常规的低代码业务流程,让设计师在设计时就完成UI层面的配置工作。而P2C技术的应用将会影响逻辑配置的方式,既D2C使得UI层面由设计师在设计时完成,P2C使得交互逻辑层面由PD在写PRD时完成

那么在最理想状态下,生成应用这个过程对于PD和设计师来说是无感知的,PD和设计师在完成本职工作后,只需要稍微等待一段时间,就能体验到完整应用

以今年上半年最火的AI技术ChatGPT为例,描述一下基本流程和实现方案。

基本流程

  1. 同步PRD文本内容(比如贴个PRD链接),生成基本数据。
  2. 同步设计稿(通常会在PRD中获取),生成基本数据。
  3. 和ChatGPT对话,修正数据。

理想状态下的基本流程其实就3步。对于用户来说,流程约简单约好,但实际上,无论是D2C还是P2C技术都存在缺陷,很难说一步到位,在实现方案中会进一步说明。

实现方案

存在2种方案:

完全信任AI

完全信任AI,AI主导应用的生产,具体有2种:

PRD+Chat

将PRD同步给ChatGPT后,用户就可以和ChatGPT对话不断地修正数据,既全程只通过ChatGPT完成应用的生产。

虽然难以满足对UI要求比较高的场景,因为用户不可能浪费大量的时间和精力去和ChatGPT描述这些细节(如某个组件的大小)。但对于部分toB页面(如各类图表)来说是足够的。

这种实现起来也相对容易,通常只需要设置好prompt就行。

Design+PRD+Chat

如基本流程所描述的那样,有了D2C技术的支持,ChatGPT可以基于D2C生产的数据再进一步解析PRD生产新的数据,能够满足部分对UI要求比较高的场景。

但是交互逻辑完全靠ChatGPT去理解真的会更好吗?

对于原先的低代码业务流程来说,确实不需要在平台手动配置了,但PD在PRD投入的时间和精力会变多,PD不仅要根据严格规范去编写,还需要对一些细节足够熟悉,并且能对具体逻辑拆解,最后还需要组织好语言,并以文字的形式进行输出。所以整体来看效率会是否会更高,我是持怀疑态度的。

基于此,我认为流程图在描述具体逻辑时会比文字要好,比较起来有以下优点:

  1. 清晰性:流程图通过明确的形状、箭头和连接线表示步骤、事件和决策,逻辑关系一目了然。相比之下,文字描述可能较难一眼看清整个逻辑结构。
  2. 易于理解:流程图可以帮助在复杂的产品逻辑中进行简化。它们不仅有助于更快地理解整体流程,还可以直观地表示各个部分。这让其他人能更容易理解复杂的逻辑。
  3. 高效沟通:对于大多数人来说,视觉信息容易传递吸收。流程图可以作为团队成员间沟通的枢纽,帮助他们共享和讲解想法、需求和解决方案。
  4. 易于跟踪:流程图通过直观的方式展示了产品的各个阶段及其相互关系,便于在项目执行过程中追踪进度和问题点。
  5. 规范化表达:流程图采用标准化的符号和图标,使得不同的用户可以更容易地理解和遵循那些已经制定好的逻辑流程。
  6. 结构化数据:基于规范化表达的优点,流程图更容易被转换成标准化的数据结构,比文字描述这种比较模糊的表达方式,更容易被计算机理解。

总的来说,就是流程图相比于文字通常更容易被人和计算机所理解。PRD的目的不仅是为了指导开发人员进行开发,更重要的是它需要足够清晰和直观,确保大家都能比较容易理解,并能在原始产品逻辑的基础上进行进一步的迭代或扩展。所以PRD不应该只局限于用文字和图表去描述,而应该尝试用流程图去描述一些具体逻辑,这是有一定的帮助的。

辅助型AI

辅助型AI是将AI接入到低代码平台中,和完全信任AI不同,AI只是低代码平台的一部分,用户的主要操作还是在低代码平台中,是对传统低代码平台的改造,用互联网黑话叫AI赋能低代码。这是一种相对保守方案,相比于完全信任AI,我认为这种方案更加务实一些。

作为低代码平台的辅助工具,在创建应用时,将PRD和设计稿上传和识别生成页面一些基础数据,再通过平台提供的编辑能力进行调整,最后生成应用。

这样做的优势在于,流程中的第三步:需要和ChatGPT进行对话修正数据,可以被替代成更高效的方式,让用户通过可视化编辑器去调整,而不是让用户消耗时间和精力去思考和组织语言

无论是哪种方案,需要注意点是:

  1. temperature的值应该设置的低一点,我们只需要AI准确地理解我们需要什么,也就是更多是基于事实出发。
  2. 节约token的数量,比如让ChatGPT以patch的方式生产新的DSL。

总结

突破前后端的边界,打通全链路,是基于低代码逻辑配置的扩展,解放后端开发人员的生产力;借鉴Virtual DOM的思想,实现不同平台的渲染器,低代码不止是局限于web,而是能覆盖不同平台的各种场景;D2C优化UI层面的配置过程;P2C优化交互逻辑层面的配置过程。将四个方向结合起来,我认为就是低代码平台比较理想的形态:以构建全链路的跨平台应用为目标,通过AI处理配置过程中的大部分工作,再由用户进行少量配置,甚至不做任何配置文章来源地址https://www.toymoban.com/news/detail-473664.html

到了这里,关于探索低代码的新形态(D2C、ChatGPT)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于React的低代码开发:探索应用构建的新模式

    🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法|MySQL| ​ 💫个人格言:“没有罗马,那就自己创造罗马~” 文章目录 随着数字化转型的深入,企业对应用开发的效率和灵活性要求越来越高。低代码平台(Low-Code Platform)作为一种新兴的软件开发

    2024年03月11日
    浏览(62)
  • 探索学习和入门使用GitHub Copilot:提升代码开发的新利器

    在最近的开发工作中,发现了一个比较实用的工具,github copilot,这是一款基于人工智能的代码助手工具,旨在提供智能的代码补全和生成功能。在开发过程中能够有效减少我们在繁琐代码上所花费的时间,例如打日志。也可以帮助我们刷题。 本文将介绍如何入门使用GitHub

    2024年02月04日
    浏览(79)
  • chatgpt赋能python:Python中如何实现图形移动:探索基本概念和代码示例

    图形移动是计算机科学中的基本概念,它与广泛应用的游戏、动画和用户界面设计有密切关系。 在Python中,我们可以使用各种库和框架来实现图形移动和动画效果,包括Tkinter,Pygame,Matplotlib等。 在本文中,我们将介绍如何使用Python实现基本的图形移动,包括移动方向,移动

    2024年02月09日
    浏览(45)
  • 品味Pinia: 探索高端时尚的新起点

    在当今时尚界,随着科技发展的不断进步,高端时尚品牌不再仅仅局限于服装与配饰,而是逐渐延伸到了技术领域。 Pinia 作为一种全新的高端时尚框架,为开发者提供了独特的体验和更多的创作空间。 Vue 官方也在推荐使用 pinia 作为 Vue 项目状态管理的工具。本文将探讨什么

    2024年02月13日
    浏览(46)
  • 《花雕学AI》Poe:一个让你和 AI 成为朋友的平台,带你探索 ChatGPT4 和其他 八种AI 模型的奥秘

    你是否曾经梦想过,能够在一个平台上,和多种不同的 AI 模型进行有趣、有用、有深度的对话,甚至还能轻松地把你的对话分享给其他人?如果你有这样的梦想,那么 Poe 一站式 AI 工具箱就是你的不二之选! Poe 是国外知名问答社区 Quora 推出的 AI 平台,它汇集了多个基于大

    2024年02月03日
    浏览(40)
  • 探索智能合约的新境界:CodeforDAO 合约库

    项目地址:https://gitcode.com/CodeforDAO/contracts 在区块链的世界里,智能合约是驱动去中心化应用的核心元素。CodeforDAO 是一个精心策划的合约库,旨在为开发者提供一套高质量、安全可靠的智能合约模板和工具,帮助他们快速开发和部署自己的区块链项目。 CodeforDAO 的合约库是一

    2024年04月24日
    浏览(39)
  • 使用 GPT4 和 ChatGPT 开发应用:前言到第三章

    原文:Developing Apps with GPT-4 and ChatGPT 译者:飞龙 协议:CC BY-NC-SA 4.0 在发布仅仅五天后,ChatGPT 就吸引了惊人的一百万用户,这在科技行业及其他领域引起了轰动。作为一个副作用,OpenAI API 用于人工智能文本生成的接口突然曝光,尽管它已经可用了三年。ChatGPT 界面展示了这

    2024年01月20日
    浏览(73)
  • 探索宇宙奥秘:Cosmos - 构建区块链网络的新范式

    项目地址:https://gitcode.com/evgenyneu/Cosmos 在不断发展的区块链领域中,一个名为Cosmos的项目正在引起广泛的注意。Cosmos的目标是解决区块链的互操作性和可扩展性问题,打造一个去中心化的互联网新时代。 Cosmos是一个开源项目,它提供了一个由多个独立但相互连接的区块链(称

    2024年04月11日
    浏览(42)
  • Wigle WiFi Wardriving - 探索无限网络的新工具

    Wigle WiFi Wardriving 是一个开源的移动应用,致力于帮助人们探索周围的无线网络,并进行地理定位和数据分析。这款应用程序基于 Android 系统,并提供了丰富的功能,可让你轻松地了解周围环境中的各种 Wi-Fi 网络信息。 Wi-Fi 扫描 :使用 Wigle WiFi Wardriving 可以快速扫描并发现周

    2024年04月23日
    浏览(43)
  • 探索pytest:Python自动化测试的新境界

    在当今的软件开发领域,测试已经不仅仅是一个简单的步骤,而是确保软件质量的核心环节。Python,作为全球最受欢迎的编程语言之一,拥有丰富的测试框架和工具。而在这其中,pytest无疑是最受欢迎和最具影响力的一个。本文将深入探讨pytest的魅力,以及它如何改变了Pyt

    2024年02月11日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包