AIGC时代,大模型微调如何发挥最大作用?

这篇具有很好参考价值的文章主要介绍了AIGC时代,大模型微调如何发挥最大作用?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

人工智能的快速发展推动了大模型的广泛应用,它们在语言、视觉、语音等领域的应用效果已经越来越好。但是,训练一个大模型需要巨大的计算资源和时间,为了减少这种资源的浪费,微调已经成为一种流行的技术。微调是指在预训练模型的基础上,通过在小数据集上的训练来适应新的任务。AIGC(AI芯片)的出现进一步加快了大模型的推广,它可以提供更快的计算速度和更大的存储容量。本文将介绍AIGC下大模型微调的方法,包括微调所有层、微调顶层、冻结底层、逐层微调和迁移学习。我们将使用PaddlePaddle这个开源框架,以自然语言处理和计算机视觉为例,来说明这些方法的原理和实现步骤。

在AIGC大模型下,我们目前最熟知一个大模型就是Chatgpt,目前国外大佬也正在研究能否在计算机视觉角度,做到上传一个图片或一个视频,我告诉他做视觉上的任务,就可以实现相应的视觉需求。

这样的大模型,我们虽然暂时没办法用到开源的模型,而且模型涉及到的参数也太大了,如果自己训练累死机器,在面对不同业务的情况下, 我们更多的方法是基于大模型进行模型微调的方法来实现我们的应用

微调的方法

在深度学习中,微调是一种重要的技术,用于改进预训练模型的性能。除了微调ChatGPT之外,还有许多其他预训练模型可以进行微调。以下是一些微调预训练模型的方法:

  • 微调所有层:将预训练模型的所有层都参与微调,以适应新的任务。
  • 微调顶层:只微调预训练模型的顶层,以适应新的任务。
  • 冻结底层:将预训练模型的底层固定不变,只对顶层进行微调。
  • 逐层微调:从底层开始,逐层微调预训练模型,直到所有层都被微调。
  • 迁移学习:将预训练模型的知识迁移到新的任务中,以提高模型性能。这种方法通常使用微调顶层或冻结底层的方法。

对于模型的参数微调,我认为可以这样理解,以原始的chatgpt为例,它像是一个通用的大模型,

像是一个在大学学习到所有专业的知识的大学生,基于过往的学习经验以及对生活中的一些事情,已经有了属于自己的一套学习方法思维逻辑(这个就是模型的参数)

现在这个大学生毕业后从事某一种行业的工作,那他就要开始学习工作上的内容,来产出工作的成果。那在他学习的过程,他以往在大学学到专业知识学习方法是不是也可以拿来应用呢,是不是可以用同样的学习方法学习工作的东西呢(这个就是微调)

微调,通过我过去积累学到东西,来应用到现在新的内容中来产出新的结果。

回到对不同层进行微调,如何选择那些层需要微调?就需要知道模型这些层在原始数据集上学习到了什么经验?
那些经验是我们可以拿来复用到另一个数据集中的?

在神经网络中,那些层是在学经验?

在计算机视觉中,卷积神经网络 (Convolutional Neural Networks, CNNs) 通常会学习到如下经验:

  • 局部感知:CNNs 通过卷积操作和池化操作可以学习到局部特征,如边缘、纹理等,从而实现对图像的局部感知。
  • 平移不变性:CNNs可以学习到特征对平移的不变性,这样对于同一物体的不同部分,CNNs 可以生成相似的特征表示。
  • 分层抽象:CNNs可以通过多层卷积操作学习到越来越抽象的特征,从低级别特征如边缘到高级别特征如物体的部分或整体。

此外,近年来也出现了一些基于注意力机制的模型,如自注意力模块(Self-Attention Model)、transformer模块可以通过学习到的注意力权重来对图像中的特征进行加权和,从而更加精细地提取特征

在自然语言处理中,循环神经网络 (Recurrent Neural Networks, RNNs) 和 Transformer 网络通常会学习到如下经验:

  • 时序依赖关系:RNNs 和 Transformer 网络可以学习到文本序列中的时序依赖关系,从而实现对文本的序列化处理。
  • 分层抽象:RNNs 和 Transformer 网络可以通过多层神经网络实现对文本的分层抽象,从而学习到更高级别的文本特征表示。
  • 上下文依赖:RNNs 和 Transformer 网络可以学习到上下文依赖关系,从而可以生成基于上下文的文本特征表示,从而提高模型的性能。

可以说对于处理计算机视觉和自然语言处理任务,模型上游的部分都是在一个学习经验的过程

但计算机视觉和自然语言处理在做微调模型时,区别:

对于计算机视觉,不同的图像,学习到的经验,可能完全是不同的,但是对于自然语言处理不同的文本,可能学习到的经验是一样的,因为文本的数据,特征更多是从上下文依赖,语言时序性。这些特征在不同内容的文本中是可以套用的。(比如说写论文和写作文,写作上很大的相似地方)

用paddle实现模型微调

以下是使用PaddlePaddle框架对上述五种微调方法的示例代码:

import paddle
from paddle import nn

# 加载预训练的Transformer模型
pretrained_model = paddle.vision.models.Transformer()

# 1. 微调所有层
for param in pretrained_model.parameters():
    param.trainable = True

# 2. 微调顶层
for param in pretrained_model.decoder.parameters():
    param.trainable = True

# 3. 冻结底层
for param in pretrained_model.encoder.parameters():
    param.trainable = False

# 4. 逐层微调
for i, layer in enumerate(pretrained_model.encoder.layers):
    if i >= 6:  # 只微调第6层及以上的层
        for param in layer.parameters():
            param.trainable = True
    else:
        for param in layer.parameters():
            param.trainable = False

# 5. 迁移学习
# 加载预训练的模型
pretrained_model = paddle.vision.models.ResNet50(pretrained=True)

# 新建分类器
num_classes = 10
classifier = nn.Linear(2048, num_classes)

# 冻结预训练模型的所有层
for param in pretrained_model.parameters():
    param.trainable = False

# 微调新建分类器的参数
for param in classifier.parameters():
    param.trainable = True

# 将预训练模型和新建分类器组合成新的模型
model = nn.Sequential(pretrained_model, classifier)

上述代码中,我们首先通过paddle.vision.models.Transformer()加载了预训练的Transformer模型。然后根据不同的微调方法,分别对模型的不同层进行微调或冻结。最后,我们使用迁移学习的方法将预训练模型和新建分类器组合起来,形成一个新的模型。

使用Paddle实现ChatGPT模型的五种微调方法

微调所有层

import paddle
from paddlenlp.transformers import GPT2Model, GPT2ForPretraining, GPT2PretrainingCriterion

# 加载预训练模型
model = GPT2ForPretraining.from_pretrained('gpt2-medium-en')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium-en')

# 定义新的分类头
class_num = 2
cls = paddle.nn.Linear(model.config["hidden_size"], class_num)

# 将新的分类头添加到模型中
model.cls = cls

# 通过微调所有层来适应新任务
optimizer = paddle.optimizer.Adam(learning_rate=1e-5, parameters=model.parameters())
criterion = GPT2PretrainingCriterion()

微调顶层

import paddle
from paddlenlp.transformers import GPT2Model, GPT2ForPretraining, GPT2PretrainingCriterion

# 加载预训练模型
model = GPT2ForPretraining.from_pretrained('gpt2-medium-en')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium-en')

# 固定模型底层,只微调顶层
for param in model.parameters():
    param.trainable = False

# 定义新的分类头
class_num = 2
cls = paddle.nn.Linear(model.config["hidden_size"], class_num)

# 将新的分类头添加到模型中
model.cls = cls

# 通过微调顶层来适应新任务
for param in model.cls.parameters():
    param.trainable = True
optimizer = paddle.optimizer.Adam(learning_rate=1e-5, parameters=model.cls.parameters())
criterion = paddle.nn.CrossEntropyLoss()

冻结底层

import paddle
import paddle.nn.functional as F
from paddlenlp.transformers import GPTForPretraining, GPTChineseTokenizer

# 加载预训练模型和分词器
model = GPTForPretraining.from_pretrained('gpt-cpm-large-cn')
tokenizer = GPTChineseTokenizer.from_pretrained('gpt-cpm-large-cn')

# 构造数据集和数据加载器
train_ds = [['今天天气不错'], ['明天要下雨'], ['这个季节很适合旅游']]
train_ds = [{'text': text} for text in train_ds]

def batch_iter(data, batch_size):
    num_batches = len(data) // batch_size
    if len(data) % batch_size != 0:
        num_batches += 1
    for i in range(num_batches):
        batch = data[i * batch_size: (i + 1) * batch_size]
        yield batch

batch_size = 2
train_loader = paddle.io.DataLoader(train_ds, batch_size=batch_size, shuffle=True, drop_last=True)

# 构造优化器和损失函数
optimizer = paddle.optimizer.AdamW(parameters=model.parameters(), learning_rate=1e-4)
criterion = F.cross_entropy

# 冻结底层
for layer in model.layers[:6]:
    layer.eval()
    for param in layer.parameters():
        param.trainable = False

# 微调模型
for epoch in range(3):
    for batch in train_loader:
        texts = [example['text'] for example in batch]
        encoded_inputs = tokenizer(texts, return_attention_mask=True, return_length=True, padding=True)
        input_ids = paddle.to_tensor(encoded_inputs['input_ids'])
        attention_mask = paddle.to_tensor(encoded_inputs['attention_mask'])
        logits = model(input_ids, attention_mask=attention_mask)[0]
        loss = criterion(logits.reshape(-1, logits.shape[-1]), input_ids.reshape(-1))
        loss.backward()
        optimizer.step()
        optimizer.clear_grad()
    print(f'Epoch {epoch + 1}: loss={loss.numpy():.4f}')

# 保存微调后的模型
paddle.save(model.state_dict(), 'gpt-cpm-large-cn-finetuned

逐层微调

import paddle
import paddle.nn.functional as F
from paddlenlp.transformers import GPTForPretraining, GPTChineseTokenizer

# 加载预训练模型和分词器
model = GPTForPretraining.from_pretrained('gpt-cpm-large-cn')
tokenizer = GPTChineseTokenizer.from_pretrained('gpt-cpm-large-cn')

# 构造数据集和数据加载器
train_ds = [['今天天气不错'], ['明天要下雨'], ['这个季节很适合旅游']]
train_ds = [{'text': text} for text in train_ds]

def batch_iter(data, batch_size):
    num_batches = len(data) // batch_size
    if len(data) % batch_size != 0:
        num_batches += 1
    for i in range(num_batches):
        batch = data[i * batch_size: (i + 1) * batch_size]
        yield batch

batch_size = 2
train_loader = paddle.io.DataLoader(train_ds, batch_size=batch_size, shuffle=True, drop_last=True)

# 构造优化器和损失函数
optimizer = paddle.optimizer.AdamW(parameters=model.parameters(), learning_rate=1e-4)
criterion = F.cross_entropy

# 迁移学习微调模型
for epoch in range(3):
    for batch in train_loader:
        texts = [example['text'] for example in batch]
        encoded_inputs = tokenizer(texts, return_attention_mask=True, return_length=True, padding=True)
        input_ids = paddle.to_tensor(encoded_inputs['input_ids'])
        attention_mask = paddle.to_tensor(encoded_inputs['attention_mask'])
        logits = model(input_ids, attention_mask=attention_mask)[0]
        loss = criterion(logits.reshape(-1, logits.shape[-1]), input_ids.reshape(-1))
        loss.backward()
        optimizer.step()
        optimizer.clear_grad()
    print(f'Epoch {epoch + 1}: loss={loss.numpy():.4f}')

# 保存微调后的模型
paddle.save(model.state_dict(), 'gpt-cpm-large-cn-finetuned-transfer-learning.pdparams')

在上面的代码中,我将模型微调的方法从逐层微调改为了迁移学习微调。具体来说,我将原来的逐层微调中的隐藏状态计算和获取每一层的输出等相关代码去掉了,并直接将输入和注意力掩码传入模型,获取最后一层的输出,并计算损失进行反向传播和优化。

同时,我将保存模型时的文件名从 gpt-cpm-large-cn-finetuned-layer-wise.pdparams 改为了 gpt-cpm-large-cn-finetuned-transfer-learning.pdparams,以便于区分逐层微调和迁移学习微调两种方法。

迁移学习

import paddle
import paddle.nn.functional as F
from paddlenlp.transformers import GPTForPretraining, GPTChineseTokenizer

# 加载预训练模型和分词器
model = GPTForPretraining.from_pretrained('gpt-cpm-large-cn')
tokenizer = GPTChineseTokenizer.from_pretrained('gpt-cpm-large-cn')

# 构造数据集和数据加载器
train_ds = [['今天天气不错'], ['明天要下雨'], ['这个季节很适合旅游']]
train_ds = [{'text': text} for text in train_ds]

def batch_iter(data, batch_size):
    num_batches = len(data) // batch_size
    if len(data) % batch_size != 0:
        num_batches += 1
    for i in range(num_batches):
        batch = data[i * batch_size: (i + 1) * batch_size]
        yield batch

batch_size = 2
train_loader = paddle.io.DataLoader(train_ds, batch_size=batch_size, shuffle=True, drop_last=True)

# 构造优化器和损失函数
optimizer = paddle.optimizer.AdamW(parameters=model.parameters(), learning_rate=1e-4)
criterion = F.cross_entropy

# 训练模型
epochs = 3
for epoch in range(epochs):
    for batch in train_loader:
        texts = [example['text'] for example in batch]
        encoded_inputs = tokenizer(texts, return_attention_mask=True, return_length=True, padding=True)
        input_ids = paddle.to_tensor(encoded_inputs['input_ids'])
        attention_mask = paddle.to_tensor(encoded_inputs['attention_mask'])
        logits = model(input_ids, attention_mask=attention_mask)[0]
        loss = criterion(logits.reshape(-1, logits.shape[-1]), input_ids.reshape(-1))
        loss.backward()
        optimizer.step()
        optimizer.clear_grad()
    print(f'Epoch {epoch + 1}: loss={loss.numpy():.4f}')

# 保存微调后的模型
paddle.save(model.state_dict(), 'gpt-cpm-large-cn-finetuned.pdparams')

在上面的代码中,我们首先加载了预训练的 GPT 模型和分词器,然后构造了一个简单的数据集和数据加载器。接着,我们使用 AdamW 优化器和交叉熵损失函数来训练模型,训练完后保存微调后的模型。

AIGC时代,大模型微调如何发挥最大作用?文章来源地址https://www.toymoban.com/news/detail-474007.html

到了这里,关于AIGC时代,大模型微调如何发挥最大作用?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • AI绘画中的负面词 是如何正确使用以及发挥作用

    Stable Diffusion的艺术或图像生成,有些参数是必不可少的,其中之一就是负提示。本次将深入解析稳定扩散中的负提示是什么,如何使用这个参数来生成高质量的图像。 negative prompt,\\\"负面提示\\\"是一种独特的技巧,它在稳定扩散的过程中起着重要作用。这种方法让用户有能力明

    2024年02月12日
    浏览(58)
  • 北斗GPS卫星校时服务器如何在各领域发挥重要作用

    北斗GPS卫星校时服务器如何在各领域发挥重要作用 北斗GPS卫星校时服务器如何在各领域发挥重要作用 京准电子科技官微——ahjzsz 1.通信与网络:时钟服务器可用于确保通信网络中的各个设备具有高度精确的时间同步。这对于数据通信、日志记录、安全认证等方面至关重要。

    2024年02月14日
    浏览(59)
  • AIGC大模型时代下,该如何应用高性能计算PC集群打造游戏开发新模式?

    ACT | SIM | ETC | FTG | RAC AVG | RPG | FPS | MUG | PUZ ACT、SIM、ETC、FTG、RAC、RTS、STG、AVG、RPG、FPS、MUG、PUZ、SLG、SPG等游戏类型,需要高性能的计算机来支持运行。为了满足这些游戏的需求,国内服务器厂商不断推出新的产品,采用液冷散热技术,大模型构建和PC集群一体机等技术来提高

    2024年02月09日
    浏览(56)
  • 看渗压计_水位计_测斜仪_位移计在大坝安全监测中如何发挥作用

    工程安全监测传感器在水库大坝的安全监测方面起着至关重要的作用,不同的工程安全传感器在大坝安全监测中发挥着不同的作用,南京峟思针对以一些工程安全监测传感器在水库大坝安全监测方面的应用给大家简单介绍一下: 渗压计在水库大坝方面的应用:它是用于监测土

    2024年02月12日
    浏览(33)
  • 【AIGC】Stable Diffusion的模型微调

    为什么要做模型微调 模型微调可以在现有模型的基础上,让AI懂得如何更精确生成/生成特定的风格、概念、角色、姿势、对象。Stable Diffusion 模型的微调方法通常依赖于您要微调的具体任务和数据。 下面是一个通用的微调过程的概述 : 准备数据集 :准备用于微调的数据集。

    2024年02月19日
    浏览(48)
  • 【AIGC】Stable Diffusion之模型微调工具

    推荐一款好用的模型微调工具,cybertron furnace 是一个lora训练整合包,提供训练 lora 模型的工具集或环境。集成环境包括必要的依赖项和配置文件、预训练脚本,支持人物、二次元、画风、自定义lora的训练,以简化用户训练 lora 模型的流程。支持图片预处理、图片的标签编辑

    2024年02月20日
    浏览(54)
  • 【AIGC】Baichuan2-13B-Chat模型微调

    微调框架:LLaMA-Efficient-Tuning 训练机器:4*RTX3090TI (24G显存) python环境:python3.8, 安装 requirements.txt 依赖包 1、准备数据集 2、训练及测试 1)创建模型输出目录 2)创建deepspeed配置文件目录 3)创建deepspeed配置文件 4)训练模型 测试模型 3、注意事项: 1)我用的是3090TI显卡,使用

    2024年02月08日
    浏览(44)
  • 【AIGC】DreamBooth:微调文本到图像扩散模型用于主题驱动的生成

    DreamBooth可以让我们使用一个很小的数据集微调文生图模型,然后基于文本提示词为我们训练的的主体替换不同的场景。  大型文本转图像模型在人工智能的发展中实现了显著的飞跃,能够从给定的文本提示中高质量和多样化地合成图像。然而,这些模型缺乏模仿给定参考集中

    2024年01月18日
    浏览(51)
  • pycharm调整最大堆发挥最大

    python程序运行时,怎么提高效率,设置pycharm最大堆过程如下; 如果8g设置为6g左右,占75%左右最佳

    2024年02月12日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包