【mmdetection小目标检测教程】一、openmmlab基础环境搭建(含mmcv、mmengine、mmdet的安装)

这篇具有很好参考价值的文章主要介绍了【mmdetection小目标检测教程】一、openmmlab基础环境搭建(含mmcv、mmengine、mmdet的安装)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

mmdetection作为openmmlab在github上star数最多的仓库,是商汤和港中文正式开源的目标检测工具箱 ,这是一个基于 PyTorch 的开源工具包。该工具包支持 Mask RCNN 等多种流行的检测框架,可在 PyTorch 环境下测试不同的预训练模型及训练新的检测分割模型。
本文将基于pytorch搭建mmdetection基础环境


mmdetection小目标检测系列教程:
一、openmmlab基础环境搭建(含mmcv、mmengine、mmdet的安装)
二、labelimg标注文件voc格式转coco格式
三、使用sahi库切分高分辨率图片,一键生成coco格式数据集
四、修改配置文件,训练专属于你的目标检测模型
五、使用mmdet和mmcv的api进行图像/视频推理预测,含异步推理工作

1.系统环境

  • ubuntu20.04
  • cuda11.3
  • cudnn8.4.1
  • anaconda3

2.构建虚拟环境

conda create -n mmlab python=3.9
conda activate mmlab

3.安装pytorch

前往pytorch官网,根据自己环境选择合适的torch版本pytorch官网

pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116

【mmdetection小目标检测教程】一、openmmlab基础环境搭建(含mmcv、mmengine、mmdet的安装)
安装完成截图
【mmdetection小目标检测教程】一、openmmlab基础环境搭建(含mmcv、mmengine、mmdet的安装)

4. 安装mmegine和mmcv

这里需要注意一个点,mmdet和mmcls依赖的是mmcv-v1.x版本,而mmseg依赖的是mmcv-v2.x

  • 在mmcv-v1.x中,cuda版本的叫mmcv-full,cpu版本的叫mmcv;
  • 在mmcv-v2.x版本中,mmcv-full被重新命名为mmcv,因此cuda版本的直接安装mmcv就可以,如果不是cuda版本的,则需要使用mim install mmcv-lite进行安装
pip install openmim
mim install mmengine
mim install mmcv-full

5.安装mmdetection

通过源码安装mmdetection,当然也可以直接通过mim install mmdet进行安装

git clone https://github.com/open-mmlab/mmcv.git -b v3.0.0rc5
pip install -r requirements.txt
mim install -v -e .

安装完成截图
【mmdetection小目标检测教程】一、openmmlab基础环境搭建(含mmcv、mmengine、mmdet的安装)
至此,环境已经全部搭建完成~可以开始后续的配置训练工作了文章来源地址https://www.toymoban.com/news/detail-474355.html

到了这里,关于【mmdetection小目标检测教程】一、openmmlab基础环境搭建(含mmcv、mmengine、mmdet的安装)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • mmdetection基于 PyTorch 的目标检测开源工具箱 入门教程

    MMDetection 支持在 Linux,Windows 和 macOS 上运行。它需要 Python 3.7 以上,CUDA 9.2 以上和 PyTorch 1.8 及其以上。 步骤 0.  从官方网站下载并安装 Miniconda。 步骤 1.  创建并激活一个 conda 环境。 步骤 2.  基于 PyTorch 官方说明安装 PyTorch。 在 GPU 平台上: 步骤 3.  使用 MIM 安装 MMEng

    2024年02月11日
    浏览(41)
  • 计算机视觉 | 目标检测与MMDetection

    目标检测的基本范式 滑窗 使用卷积实现密集预测 锚框 多尺度检测与FPN 单阶段无锚框检测器选讲 RPN YOLO、SSD Focal loss 与 RetinaNet FCOS YOLO系列选讲 1、什么是目标检测 给定一张图片 ——》用矩形框框出所感兴趣的物体同时预测物体类别。  在智慧城市中的应用 目标检测技术的

    2024年02月08日
    浏览(40)
  • 【玩转Jetson TX2 NX】(七)TX2 NX YoLoV4环境搭建+板载摄像头实时目标检测(详细教程+错误解决)

    直接下载,然后解压,最后移动到Jetson TX2 NX,如图所示,darknet下载链接: https://github.com/AlexeyAB/darknet 将解压的文件复制到Jetson TX2 NX,如图所示: 下载yolov4.weights权重文件,如图所示: 将权重文件 yolov4.weights 拷贝至 darknet 目录下,如图所示: 依次输入命令,修改Makefile 如图

    2024年02月10日
    浏览(41)
  • 使用MMDetection进行目标检测、实例和全景分割

    MMDetection 是一个基于 PyTorch 的目标检测开源工具箱,它是 OpenMMLab 项目的一部分。包含以下主要特性: 支持三个任务 目标检测(Object Detection)是指分类并定位图片中物体的任务 实例分割(Instance Segmentation)是指分类,分割图片物体的任务 全景分割(Panoptic Segmentation)是统一

    2024年02月07日
    浏览(56)
  • 基于MMdetection框架的目标检测研究-6.混淆矩阵绘制

    文章背景: 当我们训练完模型后,我们需要用训练后的模型对正负样本图片进行目标检测测试,这时候我们需要算模型在新的数据集上的检测效果(精度、过杀率、漏检率,准确度等),这时候使用测试后的结果绘制成混淆矩阵,可以很方便的帮助我们呈现和理解模型的泛化能

    2024年02月17日
    浏览(44)
  • AI实战营第二期 第五节 《目标检测与MMDetection》——笔记6

    MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 OpenMMLab 项目的一部分。是目前应用最广的算法库 主分支代码目前支持 PyTorch 1.6 以上的版本。代码链接:https://gitee.com/open-mmlab/mmdetection。 模块化设计。MMDetection 将检测框架解耦成不同的模块组件,通过组合不同的模块

    2024年02月08日
    浏览(34)
  • 【MMDetection3D】基于单目(Monocular)的3D目标检测入门实战

    本文简要介绍单目(仅一个摄像头)3D目标检测算法,并使用MMDetection3D算法库,对KITTI(SMOKE算法)、nuScenes-Mini(FCOS3D、PGD算法)进行训练、测试以及可视化操作。   单目3D检测,顾名思义,就是只使用一个摄像头采集图像数据,并将图像作为输入送入模型进,为每一个感兴

    2024年02月03日
    浏览(45)
  • 【利用MMdetection3D框架进行单目3D目标检测(smoke算法】

    mmdetection3d是OpenMMLab开发的3D目标检测开源工具箱,里面包含了许多经典的3D目标检测算法,包含了单目3D目标检测、多目3D目标检测、点云3D目标检测、多模态3D目标检测等各个方向。我们只需要把相应的算法权重下载下来,并调用相应接口即可进行检测。 mmdetection3d的安装需要

    2024年02月13日
    浏览(46)
  • 深度学习目标检测数据VisDrone2019(to yolo / voc / coco)---MMDetection数据篇

    配备摄像头的无人机(或通用无人机)已被快速部署到广泛的应用领域,包括农业、航空摄影、快速交付和监视。因此,从这些平台上收集的视觉数据的自动理解要求越来越高,这使得计算机视觉与无人机的关系越来越密切。我们很高兴为各种重要的计算机视觉任务展示一个大

    2024年02月04日
    浏览(55)
  • 基于mmdetection3d的单目3D目标检测模型,效果远超CenterNet3D

    使用 mmDetection3D 进行 单目3D 目标检测:基于 KITTI 数据集的实践 在计算机视觉领域,3D 目标检测一直是一个备受关注的研究方向。随着深度学习的发展,越来越多的工具和框架涌现出来,为研究者和开发者提供了更多的选择。本文将介绍如何使用 mmDetection3D 这一强大的框架进

    2024年04月23日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包