【SpringCloud——Elasticsearch(下)】

这篇具有很好参考价值的文章主要介绍了【SpringCloud——Elasticsearch(下)】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、数据聚合

聚合,可以实现对文档数据的统计、分析、运算。常见的聚合有三类:

①、桶聚合:用来对文档做分组

  • TermAggregation:按照文档字段值分组。
  • Date Histogram:按照日期解题分组,例如一周为一组,或者一月为一组。

②、度量聚合:用以计算一些值,例如:最大值、最小值、平均值等

  • Avg:求平均
  • Max:求最大
  • Min:求最小
  • Stats:同时求最大、最小、平均、合计等

③、管道聚合:其他聚合的结果为基础做聚合

1、桶聚合

GET /hotel/_search
{
  "size": 0,  // 设置size为0,结果中不包含文档,只包含聚合结果
  "aggs": { // 定义聚合
    "brandAgg": { //给聚合起个名字
      "terms": { // 聚合的类型,按照品牌值聚合,所以选择term
        "field": "brand", // 参与聚合的字段
        "size": 20 // 希望获取的聚合结果数量
      }
    }
  }
}

①对聚合结果进行排序:

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。

#聚合功能,自定义展示排序规则
GET /hotel/_search
{
  "size": 0,
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20,
        "order": {
          "_count": "asc"
        }
      }
    }
  }
}

 ②、限定聚合范围

#聚合功能,限定聚合范围
GET /hotel/_search
{
  "size": 0,
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  },
  "query": {
    "range": {
      "price": {
        "lte": 200
      }
    }
  }
}

 ③、基于RestAPI实现

    @Test
    void testAggregation() throws IOException {
        //1.准备
        SearchRequest request = new SearchRequest("hotel");
        //2.准备DSL
        //2.1、size
        request.source().size(0);
        //2.2、聚合
        request.source().aggregation(AggregationBuilders.terms("brandAgg")
                .field("brand")
                .size(20)
        );
        //3.发出结果
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        //4.解析结果
        //4.1、解析聚合结果
        Aggregations aggregations = response.getAggregations();
        //4.2、很具名称获取聚合结果
        Terms brandAgg = aggregations.get("brandAgg");
        //4.3、获取桶
        List<? extends Terms.Bucket> buckets = brandAgg.getBuckets();
        //4.4、遍历
        for (Terms.Bucket bucket : buckets) {
            String brandName = bucket.getKeyAsString();
            long docCount = bucket.getDocCount();
            System.out.println(brandName + " " + docCount);
        }
    }

 2、度量聚合

①、求每个品牌的用户评分的最小值、最大值、平均值(聚合嵌套)

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": { 
      "terms": { 
        "field": "brand", 
        "size": 20
      },
      "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
        "score_stats": { // 聚合名称
          "stats": { // 聚合类型,这里stats可以计算min、max、avg等
            "field": "score" // 聚合字段,这里是score
          }
        }
      }
    }
  }
}

 ②、在①的基础上再对显示结果进行按平均值降序排列

#度量聚合_聚合的嵌套_metric
GET /hotel/_search
{
  "size": 0,
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20,
        "order": {
          "scoreAgg.avg": "desc"
        }
      },
      "aggs": {
        "scoreAgg": {
          "stats": {
            "field": "score"
          }
        }
      }
    }
  }
}

 3、多条件聚合+带过滤条件的聚合

案例:

        在业务层定义方法,实现对品牌、城市、星级的聚合。搜索页面的品牌、城市等信息不应该是写死在页面的,而是通过聚合索引库中的酒店数据得来的。同时,例如当我们选择上海这个城市时,品牌和星级都是根据上海的酒店得来的,因此,我们需要对聚合的对象做限制,也就是我们说的加过滤条件。

    @Override
    public Map<String, List<String>> filters(RequestParams params) {
        try {
            Map<String,List<String>> result = new HashMap<>();
            List<String> list = new ArrayList<>();
            list.add("brand");
            list.add("city");
            list.add("starName");
            for (String s : list) {
                //1.准备Request
                SearchRequest request = new SearchRequest("hotel");
                //2.准备DSL
                //2.1、设置size
                request.source().size(0);
                //2.2、聚合
                request.source().aggregation(AggregationBuilders
                        .terms(s + "Agg")
                        .field(s).size(20));
                //2.3、查询信息
                BoolQueryBuilder boolQuery = buildBasicQuery(params);
                request.source().query(boolQuery);
                //3.发出请求
                SearchResponse response = client.search(request, RequestOptions.DEFAULT);
                //4.解析结果
                List<String> res = storageResult(response,s);
                if (s.equals("city")){
                    result.put("city",res);
                }else if (s.equals("brand")){
                    result.put("brand",res);
                }else {
                    result.put("starName",res);
                }
            }
            return result;
        }catch (Exception e){
            throw new RuntimeException(e);
        }
    }


    private List<String> storageResult(SearchResponse response,String aggName) {
        List<String> result = new ArrayList<>();
        //4.1、解析聚合结果
        Aggregations aggregations = response.getAggregations();
        //4.2、很具名称获取聚合结果
        Terms brandAgg = aggregations.get(aggName + "Agg");
        //4.3、获取桶
        List<? extends Terms.Bucket> buckets = brandAgg.getBuckets();
        //4.4、遍历
        for (Terms.Bucket bucket : buckets) {
            String value = bucket.getKeyAsString();
            result.add(value);
        }
        return result;
    }

二、拼音分词器以及自动补全查询

【SpringCloud——Elasticsearch(下)】

#自定义拼音分词器
PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": { //自定义分词器
        "my_analyzer": { //分词器名称
          "tokenizer": "ik_max_word",
          "filter": "py"
        }
      },
      "filter": { //自定义tokenizer filter
        "py": { //过滤器名称
          "type": "pinyin",//过滤器类型,这里是拼音
          "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "name":{
        "type": "text",
        "analyzer": "my_analyzer",
        "search_analyzer": "ik_smart"
      }
    }
  }
}

 案例:酒店系统实现搜索自动补全功能

1、修改索引库数据结构

PUT /hotel
{
  "settings": {
    "analysis": {
      "analyzer": {
        "text_anlyzer": {
          "tokenizer": "ik_max_word",
          "filter": "py"
        },
        "completion_analyzer": {
          "tokenizer": "keyword",
          "filter": "py"
        }
      },
      "filter": {
        "py": {
          "type": "pinyin",
          "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "id":{
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "text_anlyzer",
        "search_analyzer": "ik_smart",
        "copy_to": "all"
      },
      "address":{
        "type": "keyword",
        "index": false
      },
      "price":{
        "type": "integer"
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"
      },
      "city":{
        "type": "keyword"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword",
        "copy_to": "all"
      },
      "location":{
        "type": "geo_point"
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{
        "type": "text",
        "analyzer": "text_anlyzer",
        "search_analyzer": "ik_smart"
      },
      "suggestion":{
          "type": "completion",
          "analyzer": "completion_analyzer"
      }
    }
  }
}

2、导入数据到索引库

①、修改实体类

@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;
    private Object distance;
    private Boolean isAD;
    private List<String> suggestion;

    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
        if (this.business.contains("、") || this.business.contains("/")){
            //business有多个值,需要切割
            String[] arr = new String[10];
            if (business.contains("、")){
                arr = this.business.split("、");
            }else {
                arr = this.business.split("/");
            }
            //添加元素
            this.suggestion = new ArrayList<>();
            this.suggestion.add(this.brand);
            Collections.addAll(this.suggestion,arr);
        }else {
            this.suggestion = Arrays.asList(this.brand,this.business);
        }

    }
}

②、导入

    //批量新增文档数据
    @Test
    void testBulkRequest() throws IOException {
        //1.创建Request
        BulkRequest request = new BulkRequest();
        //2.准备Json文档
        //批量查询酒店数据
        List<Hotel> list =  hotelService.list();
        for (int i = 0; i < list.size(); i++) {
            HotelDoc hotelDoc = new HotelDoc(list.get(i));
            request.add(new IndexRequest("hotel").
                    id(hotelDoc.getId().toString()).
                    source(JSON.toJSONString(hotelDoc),XContentType.JSON));
        }
        //3.发送请求
        client.bulk(request,RequestOptions.DEFAULT);
    }

3、接口编写

①、controller

    @GetMapping("/suggestion")
    public List<String> getSuggestion(@RequestParam("key") String prefix){
        return hotelService.getSuggestion(prefix);
    }

②、service

    @Override
    public List<String> getSuggestion(String prefix) {
        try {

            //1、准备Request
            SearchRequest request = new SearchRequest("hotel");
            //2、准备DSL
            request.source().suggest(new SuggestBuilder()
                    .addSuggestion("mySuggestions",
                            SuggestBuilders.completionSuggestion("suggestion")
                                    .prefix(prefix)
                                    .skipDuplicates(true)
                                    .size(10)));
            //3、发起请求
            SearchResponse response = client.search(request, RequestOptions.DEFAULT);
            //4、解析结果
            Suggest suggest = response.getSuggest();
            //4.1、根据名称获取补全结果
            CompletionSuggestion suggestion = suggest.getSuggestion("mySuggestions");
            //4.2、获取options并遍历
            List<String> result = new ArrayList<>();
            for (CompletionSuggestion.Entry.Option option : suggestion.getOptions()) {
                //4.3、获取一个option中的text,也就是补全的此条
                String text = option.getText().string();
                result.add(text);
            }
            return result;
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }

三、Es数据与MySQL数据同步

一旦用户对数据库的数据进行了增删改操作后,Es将如何感知到数据发生了变化并进行同步呢?我们有如下几种方案可供我们解决上述问题:

  • 异步通知,业务层修改时调用MQ将修改信息发送至队列当中,由ES同步端获取该信息并将更新的数据同步到索引库中。
  • 同步更新,业务层修改完成后调用ES同步端的接口,将修改信息发送给该接口,由该接口执行数据同步操作。
  • 开启MySQL的binlog并进行监听,一旦数据库当中的数据发生变化,ES同步端则通过监听binlog得知变更信息,之后ES进行数据同步。

针对以上三种,其优缺点如下:

        【SpringCloud——Elasticsearch(下)】

 此处我们采用异步通知的方式进行数据同步:

1、声明交换机、队列、routing_key

public class MqConstants {
    /**
     * 交换机
     */
    public static final String EXCHANGE_NAME = "hotel.topic";
    /**
     * 监听数据新增队列(包括新增和修改)
     */
    public static final String INSERT_QUEUE_NAME = "hotel.insert.queue";
    /**
     * 新增队列routing_key
     */
    public static final String INSERT_ROUTING_KEY = "hotel.insert";
    /**
     * 监听数据删除队列
     */
    public static final String DELETE_QUEUE_NAME = "hotel.delete.queue";

    /**
     * 删除队列routing_key
     */
    public static final String DELETE_ROUTING_KEY = "hotel_delete";


}
@Configuration
public class MqConfig {

    //声明交换机
    @Bean("exchange")
    public TopicExchange hotelExchange(){
        return new TopicExchange(EXCHANGE_NAME);
    }
    //声明新增队列
    @Bean("insertQueue")
    public Queue insertQueue(){
        return QueueBuilder.durable(INSERT_QUEUE_NAME).build();
    }
    //声明删除队列
    @Bean("deleteQueue")
    public Queue deleteQueue(){
        return QueueBuilder.durable(DELETE_QUEUE_NAME).build();
    }
    //新增队列和交换机绑定
    @Bean
    public Binding insertQueueBinding(@Qualifier("exchange") TopicExchange topicExchange,
                                      @Qualifier("insertQueue") Queue queue){
        return BindingBuilder.bind(queue).to(topicExchange).with(INSERT_ROUTING_KEY);
    }
    //删除队列和交换机绑定
    @Bean
    public Binding deleteQueueBinding(@Qualifier("exchange") TopicExchange topicExchange,
                                      @Qualifier("deleteQueue") Queue queue){
        return BindingBuilder.bind(queue).to(topicExchange).with(DELETE_ROUTING_KEY);
    }
}

2、处理变更消息发送

    @PostMapping
    public void saveHotel(@RequestBody Hotel hotel){
        Long id = hotel.getId();
        if (id == null){
            buildHotelId.init();
            id = Long.valueOf(buildHotelId.hotelId);
            hotel.setId(id);
        }
        hotelService.save(hotel);
        rabbitTemplate.convertAndSend(MqConstants.EXCHANGE_NAME,
                MqConstants.INSERT_ROUTING_KEY,hotel.getId());
    }

    @PutMapping()
    public void updateById(@RequestBody Hotel hotel){
        if (hotel.getId() == null) {
            throw new InvalidParameterException("id不能为空");
        }
        hotelService.updateById(hotel);
        rabbitTemplate.convertAndSend(MqConstants.EXCHANGE_NAME,
                MqConstants.INSERT_ROUTING_KEY,hotel.getId());
    }

    @DeleteMapping("/{id}")
    public void deleteById(@PathVariable("id") Long id) {
        hotelService.removeById(id);
        rabbitTemplate.convertAndSend(MqConstants.EXCHANGE_NAME,
                MqConstants.DELETE_ROUTING_KEY,id);
    }

3、消息监听+ES数据同步

@Component
public class HotelListener {
    @Autowired
    private IHotelService hotelService;

    /**
     * 监听新增或修改信息
     * @param id
     */
    @RabbitListener(queues = MqConstants.INSERT_QUEUE_NAME)
    public void insertData(Long id){
        hotelService.insertById(id);
    }

    /**
     * 监听删除信息
     * @param id
     */
    @RabbitListener(queues = MqConstants.DELETE_QUEUE_NAME)
    public void deleteData(Long id){
        hotelService.deleteById(id);
    }
}
    @Override
    public void insertById(Long id) {
        try {
            Hotel hotel = getById(id);
            HotelDoc doc = new HotelDoc(hotel);
            IndexRequest request = new IndexRequest("hotel").id(doc.getId().toString());
            request.source(JSON.toJSONString(doc), XContentType.JSON);
            client.index(request,RequestOptions.DEFAULT);
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }

    @Override
    public void deleteById(Long id) {
        try {
            DeleteRequest request = new DeleteRequest("hotel", String.valueOf(id));
            client.delete(request,RequestOptions.DEFAULT);
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }

四、ES集群部署

0、集群结构介绍

【SpringCloud——Elasticsearch(下)】

1、集群搭建

①、创建docker-compose.yml文件

version: '2.2'
services:
  es01:
    image: elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data02:/usr/share/elasticsearch/data
    ports:
      - 9201:9200
    networks:
      - elastic
  es03:
    image: elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic
    ports:
      - 9202:9200
volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge

②、es运行需要修改一些linux系统权限,修改/etc/sysctl.conf文件

vi /etc/sysctl.conf

③、添加如下内容

vm.max_map_count=262144

④、执行命令,使配置生效

sysctl -p

⑤、通过docker-compose启动集群

docker-compose up -d

2、集群监控

①、启动监控程序

【SpringCloud——Elasticsearch(下)】

 

②、浏览器查看WEB界面

localhost:9000

3、集群职责及脑裂

①、集群职责

【SpringCloud——Elasticsearch(下)】

Ⅰ、master eligible节点的作用是什么?

  • 参与集群选主
  • 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求

Ⅱ、data节点的作用是什么?

  • 数据的CRUD     

Ⅲ、coordinator节点的作用是什么?

  • 路由请求到其它节点
  • 合并查询到的结果,返回给用户

②、脑裂

        默认情况下,每个节点都是master eligible节点,因此一旦master节点宕机,其它候选节点会选举一个成为主节点。当主节点与其他节点网络故障时,可能发生脑裂问题。 为了避免脑裂,需要要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题。

4、分布式新增和查询

【SpringCloud——Elasticsearch(下)】 新增流程:

【SpringCloud——Elasticsearch(下)】

 查询流程:

【SpringCloud——Elasticsearch(下)】

 

5、ES故障转移

假设有三个节点,node1、node2、node3,node1此时为主节点,node2和node3为备选节点,当node1节点发生故障宕机时,node2节点和node3节点就会进行主节点选举,选举出新的主节点,假设我们的node2节点当选了主节点,此时它就会去检查集群当中分片的状态,参考上图,我们可以看到分片一和分片二的主分片都在,备份分片2和备份分片0也都在,那就缺少了主分片0和备份分片1,此时主节点node2就会把node1节点当中的分片迁移到node2和node3上。文章来源地址https://www.toymoban.com/news/detail-474705.html

到了这里,关于【SpringCloud——Elasticsearch(下)】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • elasticsearch-数据聚合

    目录 介绍  实际操作 DSL实现Metrics聚合(嵌套聚合) RestClient实现聚合(以酒店品牌为例) 实现对酒店品牌、城市、星级的过滤 补6.20: (32条消息) Elasticsearch 聚合查询(aggs)_龙源lll的博客-CSDN博客_elasticsearch聚合查询 介绍 聚合: 实现对文档数据的统计、分析以及运算,类似于

    2023年04月09日
    浏览(36)
  • elasticsearch——数据聚合

    聚合(aggregations)可以实现对文档数据的统计、分析、运算。聚合常见的有三类: 桶(Bucket)聚合:用来对文档做分组       TermAggregation:按照文档字段值分组        Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组 度量(Metric)聚合:用以计算一

    2023年04月24日
    浏览(36)
  • Elasticsearch的数据聚合与报表

    Elasticsearch是一个分布式、实时的搜索和分析引擎,它可以处理大量数据并提供快速、准确的搜索结果。Elasticsearch的数据聚合功能可以帮助用户对搜索结果进行聚合和分析,从而生成报表和挖掘有价值的信息。在本文中,我们将深入探讨Elasticsearch的数据聚合与报表功能,揭示

    2024年02月22日
    浏览(36)
  • Elasticsearch --- 数据聚合、自动补全

    聚合(aggregations) 可以让我们极其方便的实现对数据的统计、分析、运算。例如: 什么品牌的手机最受欢迎? 这些手机的平均价格、最高价格、最低价格? 这些手机每月的销售情况如何? 实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实

    2024年02月04日
    浏览(46)
  • Spring Boot Elasticsearch7.6.2实现创建索引、删除索引、判断索引是否存在、获取/添加/删除/更新索引别名、单条/批量插入、单条/批量更新、删除数据、递归统计ES聚合的数据

    注意:我的版本是elasticsearch7.6.2、spring-boot-starter-data-elasticsearch-2.5.6 引入依赖 有时候你可能需要查询大批量的数据,建议加上下面配置文件

    2024年02月13日
    浏览(75)
  • SpringCloud分布式搜索引擎、数据聚合、ES和MQ的结合使用、ES集群的问题

    目录 数据聚合 聚合的分类 ​编辑 DSL实现Bucket聚合 ​编辑  DSL实现Metrics聚合​编辑 RestAPI实现聚合  对接前端接口​编辑  自定义分词器​编辑 Completion suggester查询 Completion suggester查询 酒店数据自动补全 实现酒店搜索框界面输入框的自动补全  数据同步问题分析​编辑 同

    2024年02月16日
    浏览(50)
  • Elasticsearch:通过动态修剪实现更快的基数聚合

    作者:Adrien Grand Elasticsearch 8.9 通过支持动态修剪(dynamic pruning)引入了基数聚合加速。 这种优化需要满足特定的条件才能生效,但一旦实现,通常会产生惊人的结果。 我们观察到,通过此更改,一些基数聚合的运行速度提高了 1,000 倍。 例如,计算由 Elastic Kubernetes 集成监控

    2024年02月15日
    浏览(54)
  • 微服务学习|elasticsearch:数据聚合、自动补全、数据同步

    聚合 (aggregations)可以实现对文档数据的统计、分析、运算。聚合常见的有三类: 桶(Bucket)聚合:用来对文档做分组 TermAggregation:按照文档字段值分组 Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组 度量(Metric)聚合:用以计算一些值,比如: 最大值、最小值、平均

    2024年02月04日
    浏览(59)
  • ElasticSearch 数据聚合、自动补全(自定义分词器)、数据同步

    官方文档 = 聚合 https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html 聚合:对文档信息的统计、分类、运算。类似mysql sum、avg、count 桶(Bucket)聚合:用来对文档做分组 TermAggregation:按照文档字段值分组(相当于mysql group by) Date Histogram:按照日期阶梯分组,

    2024年02月12日
    浏览(36)
  • ElasticSearch(7.8版本)聚合查询使用javaHighLevelRestClient实现(从MySQL聚合查询概念->ES聚合概念及实操)

    申明:本文是在实现ES聚合功能中,将过程中查找的多篇博客文献拼接在一起,参考到的博文全部在标题中附上了原文的超链接,分享出来仅是为了提做一个笔记以防忘记,并给大家提供一个参考。 聚合操作指的是在数据查找基础上对于数据进一步整理筛选行为,聚合操作也

    2023年04月24日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包