本文为博主原创文章,未经博主允许不得转载。
本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。
CenterPoint是一种anchor free的三维目标检测算法模型,发表在CVPR 2021,论文名称为《Center-based 3D Object Detection and Tracking》。其主要特点在于通过预测物体的中心点来进行目标检测和位置回归,而不需要预先产生大量候选框(anchor)。因而,这种方法的后处理更加简洁,相邻目标可通过直接选择热力图中心点来确定最终目标,不需要非极大值抑制(NMS)操作来合并重叠的候选框。但这也会带来一个缺点,CenterPoint无法区分同类型且中心点接近的目标。CenterPoint可看作是二维CorneNet和CenterNet到三维空间的一个扩展。因此,了解CornerNet和CenterNet模型有利于加深对CenterPoint的理解。CenterPoint和CenterNet来源于同一个课题组的研究成果。在nuScenes数据集的3D检测和跟踪任务中,单阶段的CenterPoint模型的NDS为65.5,AMOTA为63.8。文章来源:https://www.toymoban.com/news/detail-474995.html
1 源码与输入数据
接下来介绍的源码来源于mmdetection3d框架中的CenterPoint模型。mmdetection3d安装和调试验证可参考本专文章来源地址https://www.toymoban.com/news/detail-474995.html
到了这里,关于【三维目标检测】CenterPoint(一)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!