搭建EFK(Elasticsearch+Filebeat+Kibana)日志收集系统[windows]

这篇具有很好参考价值的文章主要介绍了搭建EFK(Elasticsearch+Filebeat+Kibana)日志收集系统[windows]。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

EFK简介
Elasticsearch 是一个实时的、分布式的可扩展的搜索引擎,允许进行全文、结构化搜索,它通常用于索引和搜索大量日志数据,也可用于搜索许多不同类型的文档。

FileBeats 是数据采集的得力工具。将 Beats 和您的容器一起置于服务器上,或者将 Beats 作为函数加以部署,然后便可在 Elastisearch 中集中处理数据。如果需要更加强大的处理性能,Beats 还能将数据输送到 Logstash 进行转换和解析。

Kibana 核心产品搭载了一批经典功能:柱状图、线状图、饼图、旭日图,等等。不仅如此,您还可以使用 Vega 语法来设计独属于您自己的可视化图形。所有这些都利用 Elasticsearch 的完整聚合功能。

Elasticsearch 通常与 Kibana 一起部署,Kibana 是 Elasticsearch 的一个功能强大的数据可视化 Dashboard,Kibana 允许你通过 web 界面来浏览 Elasticsearch 日志数据。

ELK和EFK的区别:
ELK 是现阶段众多企业单位都在使用的一种日志分析系统,它能够方便的为我们收集你想要的日志并且展示出来

ELK是Elasticsearch、Logstash、Kibana的简称,这三者都是开源软件,通常配合使用。

  1. Elasticsearch –>存储数据

是一个实时的分布式搜索和分析引擎,它可以用于全文搜索,结构化搜索以及分析。它是一个建立在全文搜索引擎 Apache Lucene 基础上的搜索引擎,使用 Java 语言编写,能对大容量的数据进行接近实时的存储、搜索和分析操作。

  1. Logstash –> 收集数据

数据收集引擎。它支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储到用户指定的位置。

  1. Kibana –> 展示数据

数据分析和可视化平台。通常与 Elasticsearch 配合使用,对其中数据进行搜索、分析和以统计图表的方式展示。

EFK是ELK日志分析系统的一个变种,加入了filebeat 可以更好的收集到资源日志 来为我们的日志分析做好准备工作。

优缺点
Filebeat 相对 Logstash 的优点:

侵入低,无需修改 elasticsearch 和 kibana 的配置;
性能高,IO 占用率比 logstash 小太多;
当然 Logstash 相比于 FileBeat 也有一定的优势,比如 Logstash 对于日志的格式化处理能力,FileBeat 只是将日志从日志文件中读取出来,当然如果收集的日志本身是有一定格式的,FileBeat 也可以格式化,但是相对于Logstash 来说,效果差很多。


下面搭建一个简单的EFK日志收集系统,基于最新的版本8.7,ELK三个软件版本最好要保持一致,不然会出现问题。

一、下载

下载版本8.7.0
Es地址:https://www.elastic.co/cn/downloads/elasticsearch
Filebeat地址:https://www.elastic.co/cn/downloads/beats/filebeat
Kibana地址:https://www.elastic.co/cn/downloads/kibana

二、使用步骤

1.安装es

解压ES安装文件
修改config目录中的elasticsearch.yml,添加两行配置,防止跨域。

http.cors.enabled: true
http.cors.allow-origin: "*"

修改host

network.host: 192.168.100.22

进入bin目录
cmd中运行elasticsearch

从启动日志中拷贝出默认用户名

修改elasticsearch.yml文件,xpack.security.http.ssl:enabled设置为false。

访问localhost:9200,输入用户elastic和拷贝出的密码
能访问,代表成功了

搭建EFK(Elasticsearch+Filebeat+Kibana)日志收集系统[windows]

2.安装kibana

解压kibana
修改config下kibana.yml
修改配置:

i18n.locale: "zh-CN"
server.host: "192.168.100.22"
server.port: 5601

重置es中kibana账号的密码
进入es的bin目录
执行:

elasticsearch-reset-password -u kibana

将生成的密码拷贝出来,配置到kibana.yml中

elasticsearch.username: "kibana"
elasticsearch.password: "MK=iUF0fuJYXx-QbC=TF"

进入kibana的bin目录启动kibana.bat

访问http://192.168.100.22:5601,输入用户名elastic,密码为安装es时拷贝出来的密码
搭建EFK(Elasticsearch+Filebeat+Kibana)日志收集系统[windows]

3.安装filebeat

解压filebeat
修改filebeat.yml,配置说明见下面的注释

......

# ============================== Filebeat inputs ===============================

filebeat.inputs:

# Each - is an input. Most options can be set at the input level, so
# you can use different inputs for various configurations.
# Below are the input specific configurations.

# filestream is an input for collecting log messages from files.
- type: log

  # Unique ID among all inputs, an ID is required.
  id: my-newframe-access-id

  # Change to true to enable this input configuration.
  enabled: true

  # Paths that should be crawled and fetched. Glob based paths.
  paths:
    - D:\ideaProjects\newframe-by-maven\logs\dmo-uaa\*\log_access.log
    #- c:\programdata\elasticsearch\logs\*
  
  # 设置fields,标记此日志
  fields:
    type: newframe-log-access
  multiline.type: pattern  
  multiline.pattern: '^\d{4}-\d{2}-\d{2}'
  multiline.negate: true
  multiline.match: after
  
  
- type: log

  # Unique ID among all inputs, an ID is required.
  id: my-newframe-error-id

  # Change to true to enable this input configuration.
  enabled: true

  # Paths that should be crawled and fetched. Glob based paths.
  paths:
    - D:\ideaProjects\newframe-by-maven\logs\dmo-uaa\log_error.log
    #- c:\programdata\elasticsearch\logs\*
  
  # 设置fields,标记此日志
  fields:
    type: newframe-log-error
  multiline.type: pattern  
  multiline.pattern: '^\d{4}-\d{2}-\d{2}'
  multiline.negate: true
  multiline.match: after
  
- type: log

  # Unique ID among all inputs, an ID is required.
  id: my-newframe-info-id

  # Change to true to enable this input configuration.
  enabled: true

  # Paths that should be crawled and fetched. Glob based paths.
  paths:
    - D:\ideaProjects\newframe-by-maven\logs\dmo-uaa\log_info.log
    #- c:\programdata\elasticsearch\logs\*
  
  # 设置fields,标记此日志
  fields:
    type: newframe-log-info
  multiline.type: pattern  
  multiline.pattern: '^\d{4}-\d{2}-\d{2}'
  multiline.negate: true
  multiline.match: after
  
- type: log

  # Unique ID among all inputs, an ID is required.
  id: my-newframe-warn-id

  # Change to true to enable this input configuration.
  enabled: true

  # Paths that should be crawled and fetched. Glob based paths.
  paths:
    - D:\ideaProjects\newframe-by-maven\logs\dmo-uaa\log_warn.log
    #- c:\programdata\elasticsearch\logs\*
  
  # 设置fields,标记此日志
  fields:
    type: newframe-log-warn
  multiline.type: pattern  
  multiline.pattern: '^\d{4}-\d{2}-\d{2}'
  multiline.negate: true
  multiline.match: after

......
setup.ilm.enabled: false                # 如果要创建多个索引,需要将此项设置为 false
setup.template.name: station_log          # 设置模板的名称
setup.template.pattern: station_log-*  # 设置模板的匹配方式,索引的前缀要和这里保持一致
setup.template.overwrite: true                # 开启新设置的模板
setup.template.enabled: false                 # 关掉默认的模板配置

# ---------------------------- Elasticsearch Output ----------------------------
output.elasticsearch:
  # Array of hosts to connect to.
  hosts: ["192.168.100.22:9200"]
  index: station_log-%{[fields.type]}-%{+yyyy.MM.dd}     # 设置索引名称,后面引用的 fields.type 变量。此处的配置应该可以省略(不符合下面创建索引条件的日志,会使用该索引)
  indices:                                             # 使用 indices 代表要创建多个索引
    - index: station_log-newframe-log-access-%{+yyyy.MM.dd}       # 设置 日志的索引,注意索引前面的 station_log 要与setup.template.pattern 的配置相匹配
      when.equals:                                     # 设置创建索引的条件:当 fields.type 的值等于 newframe-log-access 时才生效
        fields.type: newframe-log-access
    - index: station_log-newframe-log-error-%{+yyyy.MM.dd}
      when.equals:
        fields.type: newframe-log-error
    - index: station_log-newframe-log-info-%{+yyyy.MM.dd}
      when.equals:
        fields.type: newframe-log-info
    - index: station_log-newframe-log-warn-%{+yyyy.MM.dd}
      when.equals:
        fields.type: newframe-log-warn

  # Protocol - either `http` (default) or `https`.
  #protocol: "https"

  # Authentication credentials - either API key or username/password.
  #api_key: "id:api_key"
  username: "elastic"
  password: "QbxGioLkbOy_jNkuvCkV"
......

启动:

filebeat.exe setup
filebeat.exe -e -c filebeat.yml

启动后查看索引,多了几个日志的索引
搭建EFK(Elasticsearch+Filebeat+Kibana)日志收集系统[windows]

4.在kibana查看日志

访问kibana:
http://192.168.100.22:5601/
Discover
创建数据视图,查看日志,如下图
搭建EFK(Elasticsearch+Filebeat+Kibana)日志收集系统[windows]文章来源地址https://www.toymoban.com/news/detail-475312.html

附完整的filebeat.yml

###################### Filebeat Configuration Example #########################

# This file is an example configuration file highlighting only the most common
# options. The filebeat.reference.yml file from the same directory contains all the
# supported options with more comments. You can use it as a reference.
#
# You can find the full configuration reference here:
# https://www.elastic.co/guide/en/beats/filebeat/index.html

# For more available modules and options, please see the filebeat.reference.yml sample
# configuration file.

# ============================== Filebeat inputs ===============================

filebeat.inputs:

# Each - is an input. Most options can be set at the input level, so
# you can use different inputs for various configurations.
# Below are the input specific configurations.

# filestream is an input for collecting log messages from files.
- type: log

  # Unique ID among all inputs, an ID is required.
  id: my-newframe-access-id

  # Change to true to enable this input configuration.
  enabled: true

  # Paths that should be crawled and fetched. Glob based paths.
  paths:
    - D:\ideaProjects\newframe-by-maven\logs\dmo-uaa\*\log_access.log
    #- c:\programdata\elasticsearch\logs\*
  
  # 设置fields,标记此日志
  fields:
    type: newframe-log-access
  multiline.type: pattern  
  multiline.pattern: '^\d{4}-\d{2}-\d{2}'
  multiline.negate: true
  multiline.match: after
  
  
- type: log

  # Unique ID among all inputs, an ID is required.
  id: my-newframe-error-id

  # Change to true to enable this input configuration.
  enabled: true

  # Paths that should be crawled and fetched. Glob based paths.
  paths:
    - D:\ideaProjects\newframe-by-maven\logs\dmo-uaa\log_error.log
    #- c:\programdata\elasticsearch\logs\*
  
  # 设置fields,标记此日志
  fields:
    type: newframe-log-error
  multiline.type: pattern  
  multiline.pattern: '^\d{4}-\d{2}-\d{2}'
  multiline.negate: true
  multiline.match: after
  
- type: log

  # Unique ID among all inputs, an ID is required.
  id: my-newframe-info-id

  # Change to true to enable this input configuration.
  enabled: true

  # Paths that should be crawled and fetched. Glob based paths.
  paths:
    - D:\ideaProjects\newframe-by-maven\logs\dmo-uaa\log_info.log
    #- c:\programdata\elasticsearch\logs\*
  
  # 设置fields,标记此日志
  fields:
    type: newframe-log-info
  multiline.type: pattern  
  multiline.pattern: '^\d{4}-\d{2}-\d{2}'
  multiline.negate: true
  multiline.match: after
  
- type: log

  # Unique ID among all inputs, an ID is required.
  id: my-newframe-warn-id

  # Change to true to enable this input configuration.
  enabled: true

  # Paths that should be crawled and fetched. Glob based paths.
  paths:
    - D:\ideaProjects\newframe-by-maven\logs\dmo-uaa\log_warn.log
    #- c:\programdata\elasticsearch\logs\*
  
  # 设置fields,标记此日志
  fields:
    type: newframe-log-warn
  multiline.type: pattern  
  multiline.pattern: '^\d{4}-\d{2}-\d{2}'
  multiline.negate: true
  multiline.match: after

  #multiline.pattern: '^[[:space:]]+(at|\.{3})[[:space:]]+\b|^Caused by:'
  #multiline.negate: false
  #multiline.match: after

  # Exclude lines. A list of regular expressions to match. It drops the lines that are
  # matching any regular expression from the list.
  # Line filtering happens after the parsers pipeline. If you would like to filter lines
  # before parsers, use include_message parser.
  #exclude_lines: ['^DBG']

  # Include lines. A list of regular expressions to match. It exports the lines that are
  # matching any regular expression from the list.
  # Line filtering happens after the parsers pipeline. If you would like to filter lines
  # before parsers, use include_message parser.
  #include_lines: ['^ERR', '^WARN']

  # Exclude files. A list of regular expressions to match. Filebeat drops the files that
  # are matching any regular expression from the list. By default, no files are dropped.
  #prospector.scanner.exclude_files: ['.gz$']

  # Optional additional fields. These fields can be freely picked
  # to add additional information to the crawled log files for filtering
  #fields:
  #  level: debug
  #  review: 1

# ============================== Filebeat modules ==============================

filebeat.config.modules:
  # Glob pattern for configuration loading
  path: ${path.config}/modules.d/*.yml

  # Set to true to enable config reloading
  reload.enabled: false

  # Period on which files under path should be checked for changes
  #reload.period: 10s

# ======================= Elasticsearch template setting =======================

setup.template.settings:
  index.number_of_shards: 1
  #index.codec: best_compression
  #_source.enabled: false


# ================================== General ===================================

# The name of the shipper that publishes the network data. It can be used to group
# all the transactions sent by a single shipper in the web interface.
#name:

# The tags of the shipper are included in their own field with each
# transaction published.
#tags: ["service-X", "web-tier"]

# Optional fields that you can specify to add additional information to the
# output.
#fields:
#  env: staging

# ================================= Dashboards =================================
# These settings control loading the sample dashboards to the Kibana index. Loading
# the dashboards is disabled by default and can be enabled either by setting the
# options here or by using the `setup` command.
#setup.dashboards.enabled: false

# The URL from where to download the dashboards archive. By default this URL
# has a value which is computed based on the Beat name and version. For released
# versions, this URL points to the dashboard archive on the artifacts.elastic.co
# website.
#setup.dashboards.url:

# =================================== Kibana ===================================

# Starting with Beats version 6.0.0, the dashboards are loaded via the Kibana API.
# This requires a Kibana endpoint configuration.
setup.kibana:

  # Kibana Host
  # Scheme and port can be left out and will be set to the default (http and 5601)
  # In case you specify and additional path, the scheme is required: http://localhost:5601/path
  # IPv6 addresses should always be defined as: https://[2001:db8::1]:5601
  #host: "localhost:5601"

  # Kibana Space ID
  # ID of the Kibana Space into which the dashboards should be loaded. By default,
  # the Default Space will be used.
  #space.id:

# =============================== Elastic Cloud ================================

# These settings simplify using Filebeat with the Elastic Cloud (https://cloud.elastic.co/).

# The cloud.id setting overwrites the `output.elasticsearch.hosts` and
# `setup.kibana.host` options.
# You can find the `cloud.id` in the Elastic Cloud web UI.
#cloud.id:

# The cloud.auth setting overwrites the `output.elasticsearch.username` and
# `output.elasticsearch.password` settings. The format is `<user>:<pass>`.
#cloud.auth:

# ================================== Outputs ===================================

# Configure what output to use when sending the data collected by the beat.


setup.ilm.enabled: false                    # 如果要创建多个索引,需要将此项设置为 false
setup.template.name: station_log          # 设置模板的名称
setup.template.pattern: station_log-*         # 设置模板的匹配方式,索引的前缀要和这里保持一致
setup.template.overwrite: true                # 开启新设置的模板
setup.template.enabled: false                 # 关掉默认的模板配置

# ---------------------------- Elasticsearch Output ----------------------------
output.elasticsearch:
  # Array of hosts to connect to.
  hosts: ["192.168.100.22:9200"]
  index: station_log-%{[fields.type]}-%{+yyyy.MM.dd}     # 设置索引名称,后面引用的 fields.type 变量。此处的配置应该可以省略(不符合下面创建索引条件的日志,会使用该索引)
  indices:                                             # 使用 indices 代表要创建多个索引
    - index: station_log-newframe-log-access-%{+yyyy.MM.dd}       # 设置 日志的索引,注意索引前面的 station_log 要与setup.template.pattern 的配置相匹配
      when.equals:                                     # 设置创建索引的条件:当 fields.type 的值等于 newframe-log-access 时才生效
        fields.type: newframe-log-access
    - index: station_log-newframe-log-error-%{+yyyy.MM.dd}
      when.equals:
        fields.type: newframe-log-error
    - index: station_log-newframe-log-info-%{+yyyy.MM.dd}
      when.equals:
        fields.type: newframe-log-info
    - index: station_log-newframe-log-warn-%{+yyyy.MM.dd}
      when.equals:
        fields.type: newframe-log-warn

  # Protocol - either `http` (default) or `https`.
  #protocol: "https"

  # Authentication credentials - either API key or username/password.
  #api_key: "id:api_key"
  username: "elastic"
  password: "QbxGioLkbOy_jNkuvCkV"

# ------------------------------ Logstash Output -------------------------------
#output.logstash:
  # The Logstash hosts
  #hosts: ["localhost:5044"]

  # Optional SSL. By default is off.
  # List of root certificates for HTTPS server verifications
  #ssl.certificate_authorities: ["/etc/pki/root/ca.pem"]

  # Certificate for SSL client authentication
  #ssl.certificate: "/etc/pki/client/cert.pem"

  # Client Certificate Key
  #ssl.key: "/etc/pki/client/cert.key"

# ================================= Processors =================================
processors:
  - add_host_metadata:
      when.not.contains.tags: forwarded
  - add_cloud_metadata: ~
  - add_docker_metadata: ~
  - add_kubernetes_metadata: ~

# ================================== Logging ===================================

# Sets log level. The default log level is info.
# Available log levels are: error, warning, info, debug
#logging.level: debug

# At debug level, you can selectively enable logging only for some components.
# To enable all selectors use ["*"]. Examples of other selectors are "beat",
# "publisher", "service".
#logging.selectors: ["*"]

# ============================= X-Pack Monitoring ==============================
# Filebeat can export internal metrics to a central Elasticsearch monitoring
# cluster.  This requires xpack monitoring to be enabled in Elasticsearch.  The
# reporting is disabled by default.

# Set to true to enable the monitoring reporter.
#monitoring.enabled: false

# Sets the UUID of the Elasticsearch cluster under which monitoring data for this
# Filebeat instance will appear in the Stack Monitoring UI. If output.elasticsearch
# is enabled, the UUID is derived from the Elasticsearch cluster referenced by output.elasticsearch.
#monitoring.cluster_uuid:

# Uncomment to send the metrics to Elasticsearch. Most settings from the
# Elasticsearch output are accepted here as well.
# Note that the settings should point to your Elasticsearch *monitoring* cluster.
# Any setting that is not set is automatically inherited from the Elasticsearch
# output configuration, so if you have the Elasticsearch output configured such
# that it is pointing to your Elasticsearch monitoring cluster, you can simply
# uncomment the following line.
#monitoring.elasticsearch:

# ============================== Instrumentation ===============================

# Instrumentation support for the filebeat.
#instrumentation:
    # Set to true to enable instrumentation of filebeat.
    #enabled: false

    # Environment in which filebeat is running on (eg: staging, production, etc.)
    #environment: ""

    # APM Server hosts to report instrumentation results to.
    #hosts:
    #  - http://localhost:8200

    # API Key for the APM Server(s).
    # If api_key is set then secret_token will be ignored.
    #api_key:

    # Secret token for the APM Server(s).
    #secret_token:


# ================================= Migration ==================================

# This allows to enable 6.7 migration aliases
#migration.6_to_7.enabled: true


到了这里,关于搭建EFK(Elasticsearch+Filebeat+Kibana)日志收集系统[windows]的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ELKF日志系统搭建部署教程:从零开始构建Elasticsearch + Logstash + Filebeat + Kibana

    学习如何从头开始搭建和部署ELKF日志系统,利用Elasticsearch、Logstash、Filebeat和Kibana来实现高效的数据采集、处理和可视化展示。跟随本教程,轻松构建稳定的日志系统。

    2024年02月05日
    浏览(50)
  • k8s-EFK (filebeat)日志收集

    使用elasticsearch+filebeat+kibana收集pod指定目录日志,filebeat用于收集日志,es用于存储,kibana用于展示。本例以收集部署于k8s内的nginx日志为例子。 1、部署es+kibana 2.创建filebeat配置文件(基于elasticsearch存储) 3、创建nginx-filebeat Sidecar(基于elasticsearch的配置) 4.kibana创建索引,查

    2024年02月15日
    浏览(43)
  • docker搭建最新ELFK分布式日志收集系统(elasticsearch+logstash+filebeats+kibana7.16.1)

    随着分布式项目的集群部署,日志的存储也分散开来,在日后出现问题进行日志定位时就会出现很困难,服务器很多会做负载均衡,这样最终请求所落在的服务器也随机起来,所以好的方式就是集中收集起来,不需要一台一台服务器去查,方便查看。 ELFK是Elasticsearch+Logstash+F

    2024年02月08日
    浏览(49)
  • 日志系统一(elasticsearch+filebeat+logstash+kibana)

    目录 一、es集群部署 安装java环境 部署es集群 安装IK分词器插件 二、filebeat安装(docker方式) 三、logstash部署 四、kibana部署 背景:因业务需求需要将nginx、java、ingress日志进行收集。 架构:filebeat+logstash+es+kibana 服务器规划: 192.168.7.250(es) 192.168.6.216(filebeat,es) 192.168.7

    2024年02月03日
    浏览(43)
  • docker搭建Elk+Kafka+Filebeat分布式日志收集系统

    目录 一、介绍 二、集群环境 三、ES集群 四、Kibana  五、Logstash 六、Zookeeper 七、Kafka 八、Filebeat 八、Nginx (一)架构图  (二)组件介绍 1.Elasticsearch 是一个基于Lucene的搜索服务器。提供搜集、分析、存储数据三大功能。它提供了一个分布式多用户能力的全文搜索引擎,基于

    2024年02月04日
    浏览(50)
  • Linux搭建ELK日志收集系统构建:Filebeat+Redis+Logstash+Elasticse

    一、ELK概述: ELK是一组开源软件的简称,其包括Elasticsearch、Logstash 和 Kibana。ELK最近几年发展迅速,已经成为目前最流行的集中式日志解决方案。 Elasticsearch: 能对大容量的数据进行接近实时的存储,搜索和分析操作。 本项目中主要通过Elasticsearch存储所有获取的日志。 Logst

    2024年02月12日
    浏览(53)
  • 使用ELK(ES+Logstash+Filebeat+Kibana)收集nginx的日志

    书接上回:《ELK中Logstash的基本配置和用法》 默认情况下,Nginx的日志记录的是下面的格式: 在 nginx.conf 中也可以看到相关配置信息: 现在为了方便收集日志,我们把这里的格式改为 json格式,在 nginx.conf 中加入下面的内容: 以上配置是手动组装了一个json格式的配置信息。

    2024年02月11日
    浏览(45)
  • ELK实例----使用filebeat收集tomcat日志到ES并利用kibana展示

    节点名称 节点名称 ip地址 kibana kibana 10.0.0.100 elasticsearch elasticsearch 10.0.0.101 filebeat filebeat 10.0.0.102 elasticsearch、Kibana、metricbeat、filebeat版本要一致,如都是7.17.5版本 1.2.1 安装elasticsearch CPU 2C 内存4G或更多 1.2.2 安装 Kibana 1.2.3 安装metricbeat 1.2.3 安装filebeat 1.2.4 安装Nginx 1.2.5 安装t

    2024年02月09日
    浏览(50)
  • 【ELK企业级日志分析系统】部署Filebeat+Kafka+Logstash+Elasticsearch+Kibana集群详解(EFLFK)

    参见安装与部署ELK详解 参见安装与部署EFLK详解 参见安装与部署Zookeeper集群详解 1.1.1 为什么需要消息队列(MQ) MQ(Message Queue)主要原因是由于 在高并发环境下,同步请求来不及处理,请求往往会发生阻塞 。比如大量的并发请求,访问数据库,导致行锁表锁,最后请求线程会

    2024年02月16日
    浏览(47)
  • filebeat kibana elasticsearch 日志监控

    解压三个压缩包 一、filebeat的安装部署 1、打开filebeat的配置文件 2、Filebeat inputs 处打开日志输入开关,设置要监控的路径  3、Outputs 输出中设置Elasticsearch output的输出地址 4、配置kibana 的地址 5、执行  ./filebeat setup -e 二、Elasticsearch 安装部署 1、修改配置文件  2、添加如下内

    2024年02月14日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包