基础
自然语言处理(NLP)
自然语言处理PaddleNLP-词向量应用展示
自然语言处理(NLP)-前预训练时代的自监督学习
自然语言处理PaddleNLP-预训练语言模型及应用
自然语言处理PaddleNLP-文本语义相似度计算(ERNIE-Gram)
自然语言处理PaddleNLP-词法分析技术及其应用
自然语言处理PaddleNLP-快递单信息抽取
理解
自然语言处理PaddleNLP-信息抽取技术及应用
自然语言处理PaddleNLP-基于预训练模型完成实体关系抽取--实践
自然语言处理PaddleNLP-情感分析技术及应用-理论
自然语言处理PaddleNLP-情感分析技术及应用SKEP-实践
问答
自然语言处理PaddleNLP-检索式文本问答-理论
自然语言处理PaddleNLP-结构化数据问答-理论
翻译
自然语言处理PaddleNLP-文本翻译技术及应用-理论
自然语言处理PaddleNLP-机器同传技术及应用-理论
对话
自然语言处理PaddleNLP-任务式对话系统-理论
自然语言处理PaddleNLP-开放域对话系统-理论
产业实践
自然语言处理 Paddle NLP - 预训练模型产业实践课-理论
前预训练时代的自监督学习自回归、自编码预训练的前世
神经网络(Neural Network, NN)
损失函数,度量神经网络的预测结果和真实结果相差多少
- 平方差损失(欧式距离角度)预测概率分部和实际标签概率的欧式距离
- 交叉熵损失(信息量角度)预测概率分部和真实概率分部的差异,指导神经网络学习时,更加稳定
对参数W更新损失的负梯度
One-hot 人为规定,不需要学习,在推荐里有非常多的用处,(可以理解成完全命中)
词向量需要学习,可以很好的泛化结果,泛化性能比 one-hot 更好(可以理解成泛化关系的建模)
评估模型的好坏:有全体指标,以及一些公开的数据集,去评估词向量的相关性
Skip-gram: 给定一个中间值,预测上下文窗口中的一个词
CBoW:给定一个上下文词,预测中间值
RNN 抛开马尔科夫假设,
Self-Attention:每个单词和整句所有话进行匹配,来获取当前单词对每个单词的重视程度,利用这个重视程序,对整句话的每个单词进行加权,加权的结果用于表示当前这个单词
Self-Attention:也是非常流行的 Transformer 的核心模块,
Seft-Attention 没有考虑单词的顺序,所以为了更精装的表示位置信息,需要对句子的输入加个位置的序号 Positional Embedding
残差连接,很好的缓解梯度消失的问题,包括映射和直连接部分
文章来源:https://www.toymoban.com/news/detail-475377.html
视频教程:
https://aistudio.baidu.com/aistudio/course/introduce/24177?sharedLesson=1451160&sharedType=2&sharedUserId=2631487&ts=1686192078080文章来源地址https://www.toymoban.com/news/detail-475377.html
到了这里,关于自然语言处理(NLP) - 前预训练时代的自监督学习的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!