通过读取字节内容分析对象在内存中的布局

这篇具有很好参考价值的文章主要介绍了通过读取字节内容分析对象在内存中的布局。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在《如何计算一个实例占用多少内存?》中我们知道一个值类型或者引用类型的实例在内存中占多少字节。如果我们知道这段连续的字节序列的初始地址,我们就能够将代表该实例的字节内容读取出来。在接下来的内容中,我们将利用一个简单的方法输出指定实例的字节序列,并此次分析值类型和引用类型实例在内存的布局。

一、读取实例在内存中的字节
二、查看值类型和引用类型实例的内存字节
三、存储方法表地址
四、Object Header的内存布局
五、存储“瘦锁”
六、存储哈希码
七、存储SyncBlock Index

一、读取实例在内存中的字节

如下所示的PrintBytes<T>会将指定实例在内存中的字节输出到控制台上。如代码片段所示,我们先调用《如何计算一个实例占用多少内存?》中定义了SizeCalculator将承载实例内容的字节数计算出来,并创建对应长度的字节数组来存放读取的字节。如果指定的变量value是一个结构体(值类型),意味着变量会直接指向结构体的首字节。在这种情况下,我们只需要将该变量的引用转换成指针(void*),然后将其转换成IntPtr对象,并作为起始地址调用Marshal的Copy方法将指定数量的字节拷贝到创建的字节数组就可以了。

public static class BytesPrinter
{
    public unsafe static void PrintBytes<T>(T value)
    {
        var size = SizeCalculator.Instance.SizeOf(() => value);
        var bytes = new byte[size];

        var pointer = Unsafe.AsPointer(ref value);
        IntPtr head = typeof(T).IsValueType ? new IntPtr(pointer) : *(IntPtr*)pointer - IntPtr.Size;
        Marshal.Copy(head, bytes, 0, size);
        Console.WriteLine($"[{size}]{BitConverter.ToString(bytes)}");
    }

    public static string AsString(this IntPtr ptr) => BitConverter.ToString(BitConverter.GetBytes(ptr.ToInt64()));
}

对于引用类型,整个过程就要复杂一些。此时指定的变量value指向的是目标对象的地址,所以在将此变量引用转换成void*指针后,还需要将其转换成IntPtr*指针,并最终将指针的内容(也就是目标对象的地址)解析出来。由于变量指向的地址并非目标实例映射内存字节的首地址,仅仅是存储方法表地址的地方,所以还需要向前移动一个身位(IntPtr.Size)才是实例所在内存片段的首地址。在将所需字节拷贝到创建的字节数组之后,我们将其格式化成字符串输出到控制台上。另一个AsString扩展方法会将指定IntPtr对象表示的内存地址输出到控制台上,我们会在后续的演示中使用到它。顺便把《如何计算一个实例占用多少内存?》中介绍的SizeCalculator类型定义给出来。

public class SizeCalculator
{
    private static readonly ConcurrentDictionary<Type, int> _sizes = new();
    private static readonly MethodInfo _getDefaultMethod = typeof(SizeCalculator).GetMethod(nameof(GetDefault), BindingFlags.Static | BindingFlags.NonPublic)!;
    public static readonly SizeCalculator Instance = new();
    public int SizeOf(Type type, Func<object?>? instanceAccessor = null)
    {
        if (_sizes.TryGetValue(type, out var size)) return size;
        if (type.IsValueType) return _sizes.GetOrAdd(type, CalculateValueTypeInstance);

        object? instance;
        try
        {
            instance = instanceAccessor?.Invoke() ?? Activator.CreateInstance(type);
        }
        catch
        {
            throw new InvalidOperationException("The delegate to get instance must be specified.");
        }

        return _sizes.GetOrAdd(type, type => CalculateReferenceTypeInstance(type, instance));
    }
    public int SizeOf<T>(Func<T>? instanceAccessor = null)
    {
        if (instanceAccessor is null) return SizeOf(typeof(T));
        Func<object?> accessor = () => instanceAccessor();
        return SizeOf(typeof(T), accessor);
    }
    public int CalculateValueTypeInstance(Type type)
    {
        var instance = GetDefaultAsObject(type);
        var fields = type.GetFields(BindingFlags.DeclaredOnly | BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic)
            .Where(it => !it.IsStatic)
            .ToArray();

        if (fields.Length == 0) return 0;
        var tupleType = typeof(ValueTuple<,>).MakeGenericType(type, type);
        var tupple = tupleType.GetConstructors()[0].Invoke(new object?[] { instance, instance });
        var addresses = GenerateFieldAddressAccessor(tupleType.GetFields()).Invoke(tupple).OrderBy(it => it).ToArray();
        return (int)(addresses[2] - addresses[0]);
    }

    public int CalculateReferenceTypeInstance(Type type, object? instance)
    {
        var fields = GetBaseTypesAndThis(type)
            .SelectMany(type => type.GetFields(BindingFlags.DeclaredOnly | BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic))
            .Where(it => !it.IsStatic).ToArray();

        if (fields.Length == 0) return type.IsValueType ? 0 : 3 * IntPtr.Size;
        var addresses = GenerateFieldAddressAccessor(fields).Invoke(instance);
        var list = new List<FieldInfo>(fields);
        list.Insert(0, null!);
        fields = list.ToArray();
        Array.Sort(addresses, fields);

        var lastFieldOffset = (int)(addresses.Last() - addresses.First());
        var lastField = fields.Last();
        var lastFieldSize = lastField.FieldType.IsValueType ? CalculateValueTypeInstance(lastField.FieldType) : IntPtr.Size;
        var size = lastFieldOffset + lastFieldSize;

        // Round up to IntPtr.Size
        int round = IntPtr.Size - 1;
        return ((size + round) & (~round)) + IntPtr.Size;

        static IEnumerable<Type> GetBaseTypesAndThis(Type? type)
        {
            while (type is not null)
            {
                yield return type;
                type = type.BaseType;
            }
        }
    }
    private static Func<object?, long[]> GenerateFieldAddressAccessor(FieldInfo[] fields)
    {
        var method = new DynamicMethod(
            name: "GetFieldAddresses",
            returnType: typeof(long[]),
            parameterTypes: new[] { typeof(object) },
            m: typeof(SizeCalculator).Module,
            skipVisibility: true);
        var ilGen = method.GetILGenerator();

        // var addresses = new long[fields.Length + 1];
        ilGen.DeclareLocal(typeof(long[]));
        ilGen.Emit(OpCodes.Ldc_I4, fields.Length + 1);
        ilGen.Emit(OpCodes.Newarr, typeof(long));
        ilGen.Emit(OpCodes.Stloc_0);

        // addresses[0] = address of instace;
        ilGen.Emit(OpCodes.Ldloc_0);
        ilGen.Emit(OpCodes.Ldc_I4, 0);
        ilGen.Emit(OpCodes.Ldarg_0);
        ilGen.Emit(OpCodes.Conv_I8);
        ilGen.Emit(OpCodes.Stelem_I8);

        // addresses[index] = address of field[index + 1];
        for (int index = 0; index < fields.Length; index++)
        {
            ilGen.Emit(OpCodes.Ldloc_0);
            ilGen.Emit(OpCodes.Ldc_I4, index + 1);
            ilGen.Emit(OpCodes.Ldarg_0);
            ilGen.Emit(OpCodes.Ldflda, fields[index]);
            ilGen.Emit(OpCodes.Conv_I8);
            ilGen.Emit(OpCodes.Stelem_I8);
        }

        ilGen.Emit(OpCodes.Ldloc_0);
        ilGen.Emit(OpCodes.Ret);

        return (Func<object?, long[]>)method.CreateDelegate(typeof(Func<object, long[]>));
    }
    private static T GetDefault<T>() where T : struct => default!;
    private static object? GetDefaultAsObject(Type type) => _getDefaultMethod.MakeGenericMethod(type).Invoke(null, Array.Empty<object>());
}

二、查看值类型和引用类型实例的内存字节

在如下的代码片段中,我们定义的结构体FoobarStructure和类FoobarClass具有两个字段Foo和Bar,对应类型分别是Byte和Int32。我们分别创建了它们的实例,并将这两个字段设置成255(0xFF)和65535(0xFFFF)。我们将它们作为参数调用了上面定义的PrintBytes方法。

BytesPrinter.PrintBytes(new FoobarStructure(255, 65535));
BytesPrinter.PrintBytes(new FoobarClass(255, 65535));

public struct FoobarStructure
{
    public byte Foo;
    public int Bar;

    public FoobarStructure(byte foo, int bar)
    {
        Foo = foo;
        Bar = bar;
    }
}

public class FoobarClass
{
    public byte Foo;
    public int Bar;

    public FoobarClass(byte foo, int bar)
    {
        Foo = foo;
        Bar = bar;
    }

}

程序执行后会将指定的FoobarStructure和FoobarClass实际对应的字节输出控制台上。为了更好地理解该字节序列每一部分的内容,我特意按照如下的方式添加了方括号对它们进行了分割。从下面的内容可以看出,虽然Byte和Int32对应的字节数分别为1和4,但是FoobarStructure这个结构体的字节数却是8,三个空白字节(红色标记)是为了内存对齐额外添加的“留白(Padding,红色标注)”。从字节的内容还可以看出,内存中体现的字段顺序默认与它们在结构体中定义的顺序是一致的(Foo:FF;Bar:FF-FF-00-00)。顺便提一下,基元类型在内存中是按照“小端序”存储的。

[8][FF-00-00-00]-[FF-FF-00-00]

[24][00-00-00-00-00-00-00-00]-[38-39-78-B3-FD-7F-00-00]-[FF-FF-00-00-FF-00-00-00]

FoobarClass实例在内存中的字节数要多很多,变成了24。第一组8字节是代表ObjectHeader(包含4字节用于内存对齐的空字节),第2组8字节代表FoobarClass类型的方法表的内存地址。两个字段的内容体现在最后一组8字节中,可以看出它们内容与FoobarStructure不一样,这是因为在默认的情况下,结构体采用Sequential(与定义一致),而类则采用Auto,其目的是为了满足内存对其规则的情况下对字段进行重新排序,以节省内存空间。在这里Bar字段(FF-FF-00-00)被放在Foo字段(FF)的前面。由于24是引用类型实例在内存中的最小字节数(针对x64架构),字段重排针对内存的“压缩”没有体现出来。

三、存储方法表地址

.NET运行时中针对“类型”的描述信息几乎都来自于方法表这个内部的数据结构。引用类型实例在内存中的第二部分内容(ObjectHeader之后)存放的就是对应方法表的地址,实例和类型就是通过这种方式关联起来的。在C#中,我们也可以利用表示“类型句柄(Type Handle)”的RuntimeTypeHandle对象得到对应类型方法表的地址。在如下所示的代码片段中,我们在输出FoobarClass对象的内存字节序列后,我们进一步获得了FoobarClass类型的TypeHandle对象,该对象的Value属性返回的就是方法表地址。我们调用上面定义的AsString扩展方法将其转换成格式化字符串后输出到控制台上。

BytesPrinter.PrintBytes(new FoobarClass(255, 65535));
Console.WriteLine("[TypeHandle]{0}",typeof(FoobarClass).TypeHandle.Value.AsString());

从如下所示的输出结果可以看出,实例内存字节承载的和TypeHandle提供的方法表地址是一致的。

[24]00-00-00-00-00-00-00-00-38-37-78-B3-FD-7F-00-00-FF-FF-00-00-FF-00-00-00

[TypeHandle]38-37-78-B3-FD-7F-00-00

四、Object Header的内存布局

我看到一些文档将Object Header命名为SyncBlock Index/Number,这种命名不能算错,但至少没有完整地体现Object Header的作用以及存储方式。当我们对某个对象加锁的时候,系统会使用一个名为SyncBlock的内部数据结果与之关联,SyncBlock中会包含当前线程ID和递归等级等信息。这样的SyncBlock被保存在一个SyncBlock Table中,它在这个表中的索引会存储在Object Header。

通过读取字节内容分析对象在内存中的布局

实际上SyncBlock Index只体现了Object Header只体现了Object Header的一种使用场景而已。这种将SyncBlock Index存储在Object Header中实现的锁被称为 “胖锁(Fat Lock)” ,既然有胖锁,自然就有瘦锁(Thin Lock),瘦锁直接将同步信息存储在Object Header中。由于不需要访问SyncBlock Table,瘦锁的性能要高很多。除了用于存储同步信息,Object Header还可以用来缓存对象的Hash码。上图体现了Object Header典型的三种存储场景:

  • 瘦锁:使用Object Header的低27位存储当前AppDomain索引(16-26)、锁的递归等级(10-15)和线程ID(0-9);
  • 哈希码:使用Object Header的低26位存储对象的哈希码;
  • SyncBlock Index: 使用Object Header的低26位存储关联的SyncBlock 在SyncBlock Table的索引。

为了确定Object Header存储的内容,它的高5位被预留了下来,它们分别表示:

  • 27-BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX:确定存储的内容是否是哈希或者SyncBlock Index;
  • 28-BIT_SBLK_SPIN_LOCK:CLR使用它以原子操作的方式修改Object Header的内容;
  • 29- BIT_SBLK_GC_RESERVE :GC在执行过程中用于标记对象是否被固定(pined)
  • 30- BIT_SBLK_FINALIZER_RUN:GC用于确定对象的析构函数是否被调用;
  • 31- BIT_SBLK_AGILE_IN_PROGRESS:在debug build下被用来确定两个跨AppDomain应用的对象之间是否存在死循环。

对于上图中的第2/3中存储场景下,由于BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX只能确定承载的内容是否是哈希码还是SyncBlock Index,我们还得使用第26位(0-base)作进一步区分。这个比特被称为BIT_SBLK_IS_HASHCODE,顾名思义,它表示承载得内容是否是对象得哈希码。

五、存储“瘦锁”

在了解了Object Header的字节布局后,我们利用我们定义的方法将对象的Object Header的内容读取出来,看看它的内容是否与描述的一致。我们先来看看基于“瘦锁”的存储方式。

await Task.Yield();
PrintThreadId();
var foobar = new Foobar();
lock (foobar)
{
    BytesPrinter.PrintBytes(foobar);
    lock (foobar)
    {
        BytesPrinter.PrintBytes(foobar);
        lock (foobar)
        {
            BytesPrinter.PrintBytes(foobar);
            Debugger.Break();
        }
    }
}

static void PrintThreadId()
{
    var bytes = BitConverter.GetBytes(Environment.CurrentManagedThreadId);
    Console.WriteLine($"Thread Id: {BitConverter.ToString(bytes)}");
}
public class Foobar{}

在如上所示的演示程序中,我们定义了一个“空”的类Foobar。await Task.Yield()之后的操作将以异步的方式执行,为了确定Object Header中是否包含当前线程的ID,我们将线程ID以16进制的形式输出到控制台上。然后我们创建了一个Foobar对象,然后嵌套的方式锁定它,并在锁定上下文中将改对象的内存字节输出来。

Thread Id: 06-00-00-00

[24]00-00-00-00-06-00-00-00-10-02-66-4C-FA-7F-00-00-00-00-00-00-00-00-00-00

[24]00-00-00-00-06-04-00-00-10-02-66-4C-FA-7F-00-00-00-00-00-00-00-00-00-00

[24]00-00-00-00-06-08-00-00-10-02-66-4C-FA-7F-00-00-00-00-00-00-00-00-00-00

如上所示的程序运行后在控制台上的输出,我们可以看到当前线程ID是6(采用小端字节序)。按照我们上面介绍的内存布局,0-9这10位用来表示线程,由于三次输出都是在同一个线程中进行的,所以这10位比特(红色)是一致的(0000000110),对应的值位6,刚好是当前线程ID。10-15这6位(紫色)表示递归等级,解析出来值分别是0,1和2,与我们的程序正好吻合。

[0000 0][000 0000 0000] [0000 00][00 0000 0110]
[0000 0][000 0000 0000] [0000 01][00 0000 0110]
[0000 0][000 0000 0000] [0000 10][00 0000 0110]

我们在最里层的lock语句中调用了Debugger的Break方法,所以程序会在这里停下来。如果此时我们将当前进程的Dump抓下来,通过执行dumpheap -thinlock命令会将所有“瘦锁”列出来,从输出的嵌套等级(2)和dumpobj的显式结果可以看出这个瘦锁就是Foobar对象。

通过读取字节内容分析对象在内存中的布局

六、存储哈希码

我们接下来采用类似的方式演示Object Header针对哈希码的缓存。如下面的代码片段所示,我们创建了上面定义的Foobar对象,在将其内存字节打印出来之前,我们先将其GetHashCode方法返回的哈希码打印来。

var foobar = new Foobar();
var hashCode = foobar.GetHashCode();
PrintHashCode(hashCode);
BytesPrinter.PrintBytes(foobar);
static void PrintHashCode(int hashCode)
{
    var bytes = BitConverter.GetBytes(hashCode);
    Console.WriteLine($"Hash Code: {BitConverter.ToString(bytes)}");
}

从下面的输出可以看出整个Object Header的内容应该和哈希码是有关系,因为至少可以看到前面3个字节内容(9D-0D-3C)的完全一致的,但是为什么最后一个字节不同呢?

Hash Code: 9D-0D-3C-03

[24]00-00-00-00-9D-0D-3C-0F-10-86-78-E0-FA-7F-00-00-00-00-00-00-00-00-00-00

再次回到上面的描述,在第二种用于存储哈希码的场景中,Object Header利用低26位来存储哈希,所以我们按照如下的方式将其低26位提取出来后就会发现对应的值就是哈希码。在看前面的6位,BIT_SBLK_IS_HASH_OR_SYNCBLKINDEXBIT_SBLK_IS_HASHCODE位均为1,这样就可以确定后26位存储的就是哈希码了。

0F 3C 0D 9D

00001111 00111100 00001101 10011101

00000011 00111100 00001101 10011101

03 3C 0D 9D

由于Object类型的GetHashCode方法的返回类型为Int32,如果我们重写了这个方法,就可能导致ObjectHeader无法使用26位来存放哈希值。比如我们将重写了演示实例所用的Foobar类型,让重写的GetHashCode返回Int32.MaxValue。

public class Foobar
{
    public override int GetHashCode() => int.MaxValue;
}

很显然Foobar对象的哈希码就无法存储在Object Header中,如下的输出体现了这一点。其实不管计算出来的哈希码能否使用26个比特来表示,只要类型重写了GetHashCode方法且没有直接返回base.GetHashCode(),使用Object Header来缓存哈希码的策略就会失效。这一点告诉我们:当我们需要试图去重写某个类的GetHashCode方法,先考虑一下这个类型是否应该定义成结构体。

Hash Code: FF-FF-FF-7F

[24]00-00-00-00-00-00-00-00-70-27-7A-E0-FA-7F-00-00-00-00-00-00-00-00-00-00

七、存储SyncBlock Index

我们使用如下的代码来演示Object Header针对SyncBlock Index的存储。在将Foobar对象创建出来后,我们先调用其GetHashCode方法,并在针对该对象的lock上下文中完成针对内存字节的输出。

var foobar = new Foobar();
foobar.GetHashCode();
lock (foobar)
{
    BytesPrinter.PrintBytes(foobar);
    Debugger.Break();
}
public class Foobar{}

如下所示的是程序运行后的输出结果,红色标注的正是存储SyncBlock Index的Object Header的内容。

[24]00-00-00-00-0F-00-00-08-20-BD-87-E0-FA-7F-00-00-00-00-00-00-00-00-00-00

我们按照与上面一样的方式将这4个字节转换成二进制,可以确定BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX和BIT_SBLK_IS_HASHCODE位分别为1和0,所以可以确定低26位存储的就是SyncBlock Index,对应的值位15(0b111)。

08 00 00 0F

00001000 00000000 00000000 00001111

我们在lock上下文中同样调用了Debugger的Break方法,所以程序会在这里停下来。如果此时我们将当前进程的Dump抓下来,通过执行syncblk将正在被使用的SyncBlock显式出来,唯一的那个的Index正是15

通过读取字节内容分析对象在内存中的布局文章来源地址https://www.toymoban.com/news/detail-475380.html

到了这里,关于通过读取字节内容分析对象在内存中的布局的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 创造与布局:剖析 Java 对象创建过程以及内存布局

    目录 上下文提及到了类的加载过程,详细介绍了加载类的每个阶段:Loading、Linking、Initialize,在其中也说明了静态变量赋值顺序 先赋予默认值、在 Initialize 初始化阶段赋予初始值 从类加载到双亲委派:深入解析类加载机制与 ClassLoader 该篇文章会详细实例对象的创建过程、对

    2024年02月11日
    浏览(38)
  • 一看就懂的java对象内存布局

    前言 Java 中一切皆对象,同时对象也是 Java 编程中接触最多的概念,深入理解 Java 对象能够更帮助我们深入地掌握 Java 技术栈。在这篇文章里,我们将从内存的视角,带你深入理解 Java 对象在虚拟机中的表现形式。 学习路线图: 1. 对象在哪里分配? 在 Java 虚拟机中,Java 堆

    2024年02月05日
    浏览(45)
  • C++对象封装后的内存布局

    在C语言中,数据和数据的处理操作(函数)是分开声明的,在语言层面并没有支持数据和函数的内在关联性,我们称之为过程式编程范式或者程序性编程范式。C++兼容了C语言,当然也支持这种编程范式。但C++更主要的特点在支持基于对象(object-based, OB)和面向对象(object

    2024年04月15日
    浏览(42)
  • java JUC并发编程 第九章 对象内存布局与对象头

    第一章 java JUC并发编程 Future: link 第二章 java JUC并发编程 多线程锁: link 第三章 java JUC并发编程 中断机制: link 第四章 java JUC并发编程 java内存模型JMM: link 第五章 java JUC并发编程 volatile与JMM: link 第六章 java JUC并发编程 CAS: link 第七章 java JUC并发编程 原子操作类增强: link 第八章

    2024年02月07日
    浏览(44)
  • 【JUC进阶】03. Java对象头和内存布局

    为了后面更好的学习锁优化以及运作过程,需要我们对HotSpot虚拟机的Java对象内存布局有一定的了解,也作为技术储备。 在HotSpot虚拟机中,对象在堆内存中存储的布局可以划分为三个部分:对象头(Header)、实例数据(Instance Data)、对齐填充(Padding)。 而数组对象和普通对

    2024年02月10日
    浏览(45)
  • 深入理解Java虚拟机jvm-对象的内存布局

    在HotSpot虚拟机里,对象在堆内存中的存储布局可以划分为三个部分:对象头(Header)、实例 数据(Instance Data)和对齐填充(Padding)。 HotSpot虚拟机对象的对象头部分包括两类信息。第一类是用于存储对象自身的运行时数据,如哈 希码(HashCode)、GC分代年龄、锁状态标志、

    2024年02月09日
    浏览(56)
  • JVM面试题-JVM对象的创建过程、内存分配、内存布局、访问定位等问题详解

    内存分配的两种方式 指针碰撞 适用场合:堆内存 规整 (即没有内存碎片)的情况下。 原理:用过的内存全部整合到一边,没有用过的内存放在另一边,中间有一个分界指针,只需要向着没用过的内存方向将该指针移动对象内存大小位置即可。 使用该分配方式的GC收集器:

    2024年02月08日
    浏览(53)
  • java通过url读取文件内容

     使用java获取远程服务器的文件,并读取内容(该文件可以通过Url直接获取) 使用的时候稍作修改,将inputLine赋值,然后使用,否则直接在下面调用为nul,因为循环过后inputLine变成null!!!(按行读取)

    2024年02月12日
    浏览(56)
  • 通过Java读取csv文件内容

    1、通过 FileReader(String fileName) 读取整个文件,并通过 BufferedReader(Reader in) 作为每行的缓冲; 2、在通过 readLine() 读取每行内容,通过空格作为分隔符,每行转为数组,并存在 ListString[] 列表中; 3、最后打印 csv文件中的内容。 csv 文件内容如下: 打印的代码如下: 输出的内容

    2024年02月15日
    浏览(37)
  • 【jvm系列-06】深入理解对象的实例化、内存布局和访问定位

    JVM系列整体栏目 内容 链接地址 【一】初识虚拟机与java虚拟机 https://blog.csdn.net/zhenghuishengq/article/details/129544460 【二】jvm的类加载子系统以及jclasslib的基本使用 https://blog.csdn.net/zhenghuishengq/article/details/129610963 【三】运行时私有区域之虚拟机栈、程序计数器、本地方法栈 https

    2023年04月16日
    浏览(84)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包