面向Java开发者的ChatGPT提示词工程(1)

这篇具有很好参考价值的文章主要介绍了面向Java开发者的ChatGPT提示词工程(1)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

各位Java开发者们,欢迎来到万猫学社!在这里,我将和大家分享ChatGPT提示词工程的系列文章,希望能够和大家一起学习和探讨提示词的最佳实践。

虽然互联网上已经有很多有关提示词的材料,比如那些“每个人都必须知道的30个提示”,但是这些材料大都集中在ChatGPT的用户界面上,主要用于完成特定的、经常是一次性的任务。然而,我认为大型语言模型(LLM)的真正价值在于作为Java开发者使用API调用大型语言模型来快速构建软件应用程序。

这个优势被低估了,大型语言模型的API能够让开发人员非常快速地构建应用程序,这是非常令人兴奋的。因此,在本系列文章中,我们将会分享一些可能性以及如何实现它们的最佳实践,希望能够帮助各位Java开发者更好地利用大型语言模型来提高开发效率。

面向Java开发者的ChatGPT提示词工程(1)

大型语言模型的分类

在研究大型语言模型的过程中,发现了两种常见类型的模型,分别为基础大型语言模型(Base LLM)和指令调整大型语言模型(Instruction Tuned LLM)。

基础大型语言模型

基础大型语言模型是基于大量文本数据训练出来的,它可以根据之前的文本预测下一个单词。而指令调整大型语言模型则可以根据给定的指令或任务进行微调,以更好地适应特定任务的需求。

以基础大型语言模型为例,当我们输入“从前有一只独角兽”时,模型可以根据之前的文本预测接下来的单词,如“它和所有独角兽朋友一起生活在一个神奇的森林中”。

从前有一只独角兽

它和所有独角兽朋友一起生活在一个神奇的森林中

但是,如果我们输入“法国的首都是什么”,模型可能会回答“法国最大的城市是什么”或“法国的人口是多少”,因为它是基于大量的互联网文章训练出来的,这些文章往往是问答题目列表,而不是简单的事实陈述。

法国的首都是什么

法国最大的城市是什么
法国的人口是多少

指令调整大型语言模型

相比之下,一个经过指令调整的大型语言模型已经被训练成遵循指令的模型。因此,如果你问它“法国的首都是什么”,它更有可能输出“法国的首都是巴黎”。

法国的首都是什么

法国的首都是巴黎

指令调整的大型语言模型首先使用已经训练好了大量文本数据的基础型语言模型,然后使用输入和输出作为指令来进一步训练和微调它。这样训练出的大型语言模型经过指令调整后,已经被训练成为有帮助、诚实和无害的。相比于基础大型语言模型,它们更不可能输出有问题的文本,例如有害的输出。为了使系统更能够提供帮助并遵循指令,通常会使用一种称为RLHF(Reinforcement Learning from Human Feedback,人类反馈强化学习)的技术进一步优化。这种方法可以在保证语言模型的准确性和安全性的同时,提高其输出的质量和可用性。

在实际应用中,许多场景已经开始使用指令调整的大型语言模型。尽管在互联网上可能可以找到一些针对基础大型语言模型的最佳实践,但我们认为,针对大多数实际应用,大多数人应该集中精力使用指令调整的大型语言模型。这些模型更易于使用,而且由于OpenAI和其他大型语言模型公司的工作变得更加安全和对齐,这些模型也更加可靠。因此,我们建议在大多数应用中使用指令调整的大型语言模型,并专注于使用这些模型的最佳实践。

当使用指令调整大型语言模型时,可以看作向一个聪明但不了解您任务具体细节的人提供指令。因此,如果模型无法按照您的期望工作,很可能是因为提示词不够清晰。举个例子,如果您只说“请写一些关于艾伦·图灵的东西”,这并不足够明确。

请写一些关于艾伦·图灵的东西

更明确地指定您想要文本重点关注艾伦·图灵的科学工作、个人生活、历史角色或其他内容,会更有助于模型理解您的意图。此外,如果您要指定文本的语气,您想让它像专业记者写的文章,还是更像随意便条?如果您想让一名新毕业的大学生为您完成这项任务,提前指定他们需要阅读哪些文本片段,将有助于为这个新毕业生的成功做好准备。

总结

有了以上的铺垫,我们将进行后续的学习:

首先,您将学习一些Java开发中的提示词最佳实践。然后,我们将涵盖一些常见的用例:总结、推断、转换、扩展。然后,您将使用大型语言模型构建一个聊天机器人。我们希望这将激发您对可以构建的新应用程序的想象力。

在下一篇文章中,你将看到如何促使大型语言模型工作的两个原则,期待您的阅读。文章来源地址https://www.toymoban.com/news/detail-475946.html

《面向Java开发者的ChatGPT提示词工程》总目录

  • 面向Java开发者的ChatGPT提示词工程(1)准备工作
  • 面向Java开发者的ChatGPT提示词工程(2)使用分隔符、结构化输出
  • 面向Java开发者的ChatGPT提示词工程(3)GPT自我检查、尽量少的提示词
  • 面向Java开发者的ChatGPT提示词工程(4)明确步骤、GPT自己找解决方案
  • 面向Java开发者的ChatGPT提示词工程(5)避免幻觉
  • 面向Java开发者的ChatGPT提示词工程(6)迭代改进提示词
  • 面向Java开发者的ChatGPT提示词工程(7)总结、提取特定信息
  • 面向Java开发者的ChatGPT提示词工程(8)识别情感、推理主题
  • 面向Java开发者的ChatGPT提示词工程(9)翻译、语气转换、格式转换
  • 面向Java开发者的ChatGPT提示词工程(10)拼写检查、语法检查及应用实例

到了这里,关于面向Java开发者的ChatGPT提示词工程(1)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 吴恩达《面向开发者的提示词工程》

    Ref: 【中英字幕 | P01 Introduction】2023吴恩达新课《面向开发者的提示词工程》_哔哩哔哩_bilibili 对应的笔记 ChatGPT Prompt - 知乎 本课程主要介绍指令微调LLM的最佳实践 在大型语言模型或LLM的开发中,大体上有两种类型的LLM,我将其称为 Base LLM  和  Instruction Tuned LLM. 下面分别

    2024年02月10日
    浏览(41)
  • 给开发者的ChatGPT提示词工程指南

    【中文完整版全9集】第1集 引入-ChatGPT提示词工程师教程 吴恩达xOpenAI官方 【OpenAI官方 | 中文完整版】 吴恩达ChatGPT提示工程师初级到高级(AI大神吴恩达教你写提示词) ChatGPT Prompt Engineering for Development 基础大语言模型和指令精调大语言模型的区别: 指令精调大语言模型经过

    2024年02月09日
    浏览(43)
  • prompt-engineering-note(面向开发者的ChatGPT提问工程学习笔记)

    ChatGPT Prompt Engineering Learning Notesfor Developers (面向开发者的ChatGPT提问工程学习笔记) 课程简单介绍了语言模型的工作原理,提供了最佳的提示工程实践,并展示了如何将语言模型 API 应用于各种任务的应用程序中。 此外,课程里面提供了 Jupyter Notebook 代码实例,可以直接使用

    2024年02月12日
    浏览(44)
  • 吴恩达+Open AI 《面向开发者的ChatGPT Prompt 工程》课程学习1——课程介绍

    许多人都体验过ChatGPT的Web用户界面来完成特定而且通常是一次性的任务。但是从开发者的角度来说,通过API调用LLM(large language model大语言模型)来快速构建应用程序这个强大的功能被严重低估了。 学习到一些软件开发提示词的最佳实践; 学习到一些常见的用例、总结、推

    2024年02月06日
    浏览(71)
  • 吴恩达+Open AI 《面向开发者的ChatGPT Prompt 工程》课程学习2——prompt指导原则1

    吴恩达+Open AI 《面向开发者的ChatGPT Prompt 工程》课程学习1——课程介绍 吴恩达+Open AI 《面向开发者的ChatGPT Prompt 工程》课程学习2——prompt指导原则1(本博文) prompt编写指导原则1:写出清晰而具体的指示。 本节课讲述方式:理论+代码实践。 1 在整个课程中,我们将使用

    2024年02月07日
    浏览(43)
  • 面向普通用户和开发者的ChatGPT Prompt Engineering 终极指南

    你准备好发掘 ChatGPT 的全部潜力了吗?想象一下拥有一个AI工具,它能在很多方面帮助你 — — 从回答问题和创作有趣内容到提供个性化建议。这就是「Prompt Engineering」的用武之地 — — 一种有效且强大的方法,通过精心创建Prompt和指导,让 ChatGPT 的工作更出色。 在这篇文章

    2024年02月17日
    浏览(72)
  • 【笔记】跟吴恩达和IsaFulford学提示词工程(初级开发者入门课程)

    标签: #Prompt #LLM 创建时间:2023-04-28 17:05:45 链接:课程(含JupyterNotebook) ,中文版 讲师:Andrew Ng,Isa Fulford 这是一篇入门的教程,入门的意思是指大部分内容,可能你都已经知道了,但是知道不等于掌握,Prompt是一门实践经验主义科学,LLM是个黑盒,你只要不断去“实践”

    2024年02月03日
    浏览(41)
  • 🔥🔥Java开发者的Python快速进修指南:面向对象进阶

    在上一期中,我们对Python中的对象声明进行了初步介绍。这一期,我们将深入探讨对象继承、组合以及多态这三个核心概念。不过,这里不打算赘述太多理论,因为我们都知道,Python与Java在这些方面的主要区别主要体现在语法上。例如,Python支持多重继承,这意味着一个类可

    2024年02月05日
    浏览(61)
  • 🔥🔥Java开发者的Python快速进修指南:面向对象基础

    当我深入学习了面向对象编程之后,我首先感受到的是代码编写的自由度大幅提升。不同于Java中严格的结构和约束,Python在面向对象的实现中展现出更加灵活和自由的特性。它使用了一些独特的,如self和cls,这些不仅增强了代码的可读性,还提供了对类和实例的明确

    2024年02月05日
    浏览(68)
  • Java开发者的Python快速进修指南:面向对象--高级篇

    首先,让我来介绍一下今天的主题。今天我们将讨论封装、反射以及单例模式。除此之外,我们不再深入其他内容。关于封装功能,Python与Java大致相同,但写法略有不同,因为Python没有修饰符。而对于反射来说,我认为它比Java简单得多,不需要频繁地获取方法和属性,而是

    2024年02月05日
    浏览(68)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包