with torch.no_grad()解答

这篇具有很好参考价值的文章主要介绍了with torch.no_grad()解答。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

x.1 with torch.no_grad()简述及例子

torch.no_grad()是PyTorch中的一个上下文管理器(context manager),用于指定在其内部的代码块中不进行梯度计算。当你不需要计算梯度时,可以使用该上下文管理器来提高代码的执行效率,尤其是在推断(inference)阶段梯度裁剪(grad clip)阶段的时候。

在使用torch.autograd进行自动求导时,PyTorch会默认跟踪并计算张量的梯度。然而,有时我们只关心前向传播的结果,而不需要计算梯度,这时就可以使用torch.no_grad()来关闭自动求导功能。在torch.no_grad()的上下文中执行的张量运算不会被跟踪,也不会产生梯度信息,从而提高计算效率并节省内存。

下面举例一个在关闭梯度跟踪torch.no_grad()后仍然要更新梯度矩阵y.backward()的错误例子:

import torch

# 创建两个张量
x = torch.tensor([2.0], requires_grad=True)
w = torch.tensor([3.0], requires_grad=True)

# 在计算阶段使用 torch.no_grad()
with torch.no_grad():
    y = x * w

# 输出结果,不会计算梯度
print(y)  # tensor([6.])

# 尝试对 y 进行反向传播(会报错)
y.backward()  # RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

在上面的例子中,我们通过将x和w张量的requires_grad属性设置为True,表示我们希望计算它们的梯度。然而,在torch.no_grad()的上下文中,对于y的计算不会被跟踪,也不会生成梯度信息。因此,在执行y.backward()时会报错。

x.2 with torch.no_grad()在训练阶段使用

with torch.no_grad()常见于eval()验证集和测试集中,但是有时候我们仍然会在train()训练集中看到,如下:

@d2l.add_to_class(d2l.Trainer)  #@save
def prepare_batch(self, batch):
    return batch

@d2l.add_to_class(d2l.Trainer)  #@save
def fit_epoch(self):
    self.model.train()
    for batch in self.train_dataloader:
        loss = self.model.training_step(self.prepare_batch(batch))
        self.optim.zero_grad()
        with torch.no_grad():
            loss.backward()
            if self.gradient_clip_val > 0:  # To be discussed later
                self.clip_gradients(self.gradient_clip_val, self.model)
            self.optim.step()
        self.train_batch_idx += 1
    if self.val_dataloader is None:
        return
    self.model.eval()
    for batch in self.val_dataloader:
        with torch.no_grad():
            self.model.validation_step(self.prepare_batch(batch))
        self.val_batch_idx += 1

这是因为我们进行了梯度裁剪,在上述代码中,torch.no_grad()的作用是在计算梯度之前执行梯度裁剪操作。loss.backward()会计算损失的梯度,但在这个特定的上下文中,我们不希望梯度裁剪的操作被跟踪和计算梯度。因此,我们使用torch.no_grad()将裁剪操作放在一个没有梯度跟踪的上下文中,以避免计算和存储与梯度裁剪无关的梯度信息。

而梯度的记录和跟踪实际上已经在loss = self.model.training_step(self.prepare_batch(batch))中完成了(类似output = model(input)),而loss.backward()只是计算梯度并更新了model的梯度矩阵。文章来源地址https://www.toymoban.com/news/detail-476070.html

到了这里,关于with torch.no_grad()解答的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深入理解PyTorch中的train()、eval()和no_grad()

    ❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈 (封面图由文心一格生成) 在PyTorch中,train()、eval()和no_grad()是三个非常重

    2023年04月08日
    浏览(49)
  • 【Python】torch.no_grad()函数详解和示例

    torch.no_grad() 是 PyTorch 中的一个上下文管理器,用于在进入该上下文时禁用梯度计算。这在你只关心评估模型,而不是训练模型时非常有用,因为它可以显著减少内存使用并加速计算。 当你在 torch.no_grad() 上下文管理器中执行张量操作时,PyTorch 不会为这些操作计算梯度。这意

    2024年03月12日
    浏览(52)
  • python:torch.no_grad()的作用 + requires_grad,grad_fn,grad的含义及使用

    requires_grad: grad_fn: grad: 说法1: 说法2: 代码: 保证param原地数值改变操作下requires_grad=True不变。 参考资料: requires_grad,grad_fn,grad的含义及使用 测试torch.no_grad()的作用 pytorch中torch.no_grad有什么用? PyTorch 中的“with torch no_grad”有什么作用?

    2024年02月17日
    浏览(46)
  • 【Pytorch】梯度裁剪——torch.nn.utils.clip_grad_norm_的原理及计算过程

    众所周知,梯度裁剪是为了防止梯度爆炸。在训练FCOS算法时,因为训练过程出现了损失为NaN的情况,在github issue有很多都是这种训练过程出现loss为NaN,作者也提出要调整梯度裁剪的超参数,于是理了理梯度裁剪函数 torch.nn.utils.clip_grad_norm_ 的计算过程,方便调参。 torch.nn.u

    2024年02月12日
    浏览(75)
  • python中的torch.nn.Softmax() 用法和例子 dim=1 dim=2

    torch.nn.Softmax() 是 PyTorch 中的一个类,用于实现 softmax 函数。softmax 函数是一种常用的激活函数,它可以将一个向量转换成一个概率分布,使得每个元素都是非负数且和为 1。softmax 函数通常在分类问题中使用,可以将一个多分类问题转换成多个二分类问题,从而得到每个类别的

    2024年02月16日
    浏览(105)
  • 已安装Pytorch,却提示no moudle named ‘torch’(没有名称为torch的模块)

    Pytorch 安装过很多遍(自己的老电脑,实验室的电脑,实验室换的新电脑,服务器的……)不同的显卡不同的服务器……遇到过很多坑都解决过,本以为 Pytorch 配置环境的坑已经被我踩完了。今天又遇到了这种情况:Pycharm 提示是没有名称为 torch 的模块,当然不能运行也不能

    2024年02月11日
    浏览(43)
  • PyTorch翻译官网教程6-AUTOMATIC DIFFERENTIATION WITH TORCH.AUTOGRAD

    Automatic Differentiation with torch.autograd — PyTorch Tutorials 2.0.1+cu117 documentation 当训练神经网络时,最常用的算法是方向传播算法。在该算法中,根据损失函数与给定参数的梯度来调整模型参数(权重)。 为了计算这些梯度,PyTorch有一个内置的微分引擎,名为torch.autograd。它支持任

    2024年02月16日
    浏览(53)
  • Pytorch出现错误Attribute Error: module ‘torch‘ has no attribute ‘_six‘

    1. 问题描述 :我是在VScode中使用jupyter拓展,远程连接服务器。 2. torch版本 :2.0 3. pytorch版本 : 1.9.1 4. 问题原因 :torch 2.0版本 以后中没有 ‘_six.py’ 文件 5. 如何查看torch中的py文件? 我是用的anaconda,torch中的py文件位置为: 6. 解决办法 (1)我第一开始试着把torch1.9中的’

    2024年02月11日
    浏览(43)
  • 解决pytorch明明已经安装好了但是import时报错ModuleNotFoundError: No module named ‘torch‘

    按照b站一些up主的方法来安装,结果运行时却告诉我:报错ModuleNotFoundError: No module named ‘torch‘ 可是我明明已经装了torch 安装教程参考的是(https://www.bilibili.com/video/BV1o3411V7Zz/?spm_id_from=333.880.my_history.page.clickvd_source=ad813e1004be679f01f964a5bda10dd8) 后来看了一些人的经验,总算没再有

    2024年02月05日
    浏览(50)
  • PyTorch AttributeError: module ‘torch._C‘ has no attribute ‘_cuda_setDevice‘

    这个问题说简单也很简单,大概率是你的pytorch安装了cpu版本...但现在默认安装下来就是cpu版本,可以在python中输入下面两行测试以下是不是不可用,如果显示False,那么就是不可用。 然后可以conda list看一下pytorch的版本,如果是cpu的版本,那么可以参考另一个写的很详细的博

    2024年02月13日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包