华为安全专家带你入门安全多方计算

这篇具有很好参考价值的文章主要介绍了华为安全专家带你入门安全多方计算。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

6月8日(本周四) 19:00—21:00,华为安全专家带你入门安全多方计算,欢迎参加!

华为安全专家带你入门安全多方计算

考虑以下应用场景:

  • Alice认为她可能患有某种遗传病,Bob有一个包含DNA模式与各类疾病的数据库。Alice可将她的DNA序列交给Bob得到诊断结果。然而,Alice不想泄露自己的DNA序列,也不想Bob及其他人知道检测结果。
  • A公司决定某些地区扩大市场,但同时发现B公司也在扩大市场。战略上,A和B不想在同一个地区竞争,他们想知道彼此打算扩大的市场区域是否重叠,同时又不泄露区域的具体位置。
  • 两家金融机构计划开展合作,利用双方数据训练一个投资模型。然而,模型训练需要使用客户信息、商品价格、投资组合及持有量,利息和利率等各类敏感数据。因此,没有人愿意将其透露给对方及任何“可信第三方”,需要在保护隐私信息的情况下完成这个合作项目。

上述问题均为安全多方计算的基本场景。

安全多方计算 (SMC,Secure Multi-party Computation) 指在一个互不信任的多用户网络中, n n n个参与者 P 1 , P 2 , . . . , P n P_1,P_2,...,P_n P1,P2,...,Pn,每个持有秘密数据 x i ( i = 1 , 2 , . . . , n ) x_i(i=1,2,...,n) xii=1,2,...,n,希望共同计算出函数 f ( x 1 , x 2 , . . . , x n ) = ( y 1 , y 2 , . . . , y n ) f(x_1,x_2,...,x_n)=(y_1,y_2,...,y_n) f(x1,x2,...,xn)=(y1,y2,...,yn) P i P_i Pi仅得到结果 y i y_i yi,并且不泄露 x i x_i xi给其他参与者。

安全多方计算问题由中国计算机科学家姚启智教授于1982年在论文《Protocols for secure computations》中以百万富翁问题(两个百万富翁Alice和Bob想知道他们两个谁更富有,但他们都不想让对方及其他第三方知道自己财富的任何信息),开创了密码学研究的新领域,广泛应用于政府、金融、医学、人工智能等领域。

6月8日(本周四) 19:00—21:00,来自华为的安全专家将会从百万富翁问题入手,带领大家了解安全多方计算的基本概念与技术,欢迎大家参加,感谢大家支持!文章来源地址https://www.toymoban.com/news/detail-477208.html

到了这里,关于华为安全专家带你入门安全多方计算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 第162篇 笔记-安全多方计算

    一、主要概念 安全多方计算 (Secure Multi-Party Computation):指多个参与者在不泄露各自隐私数据情况下,利用隐私数据参与保密计算,共同完成某项计算任务。 该技术能够满足人们利用隐私数据进行保密计算的需求,有效解决数据的“保密性”和“共享性”之间的矛盾。多方

    2024年02月03日
    浏览(33)
  • 隐私计算论文合集「多方安全计算系列」第一期

    当前,隐私计算领域正处于快速发展的阶段,涌现出了许多前沿的 SOTA算法 和备受关注的 顶会论文 。为了方便社区小伙伴学习最新算法、了解隐私计算行业最新进展和应用,隐语开源社区在GitHub创建了Paper推荐项目awesome-PETs(PETs即Privacy-Enhancing Technologies , 隐私增强技术 )

    2024年02月09日
    浏览(41)
  • 多方安全计算破解企业数据互信难题

    所谓 多方安全计算 ,最初是为解决一组互不信任的参与方之间在保护隐私信息以及没有可信第三方的前提下协同计算问题而提出的理论框架。 当企业之间进行数据相关的合作时,随之而来就涉及到数据泄露的问题。因此,如何兼顾“数据价值共享”和“隐私保护”,成为当

    2023年04月16日
    浏览(36)
  • 联邦学习中的安全多方计算

    Secure Multi-party Computation in Federated Learning 安全多方计算就是许多参与方需要共同工作完成一个计算任务或者执行一个数学函数,每个参与方针对这个执行构建自己的数据或份额,但不想泄露自己的数据给其他参与方。 在安全多方计算中的定义包括以下几个方面: 一组有私有输

    2024年02月11日
    浏览(40)
  • 百万富翁问题--安全多方计算

    百万富翁问题—安全多方计算 是由图灵奖获得者姚期智提出的。 有A、B两个富翁,A资产i亿元,B资产j亿元,i、j均在0-10范围内,在互不让对方知道自己资产的情况下,比较A和B的资产谁多谁少。 那么如何去比较呢? 这里放十个箱子: 如果A有i亿元,那么A将第i个箱子之前的

    2024年02月04日
    浏览(32)
  • 【安全多方计算】百万富翁问题

    ​ 百万富翁问题是姚期智先生在1982年提出的第一个安全双方计算问题,两个百万富翁街头邂逅,他们都想炫一下富,比比谁更有钱,但是出于隐私,都不想让对方知道自己到底拥有多少财富,所以要在不借助第三方的情况下,知道他们之间谁更有钱。 ①这里假设Alice和Bob就是

    2024年02月05日
    浏览(37)
  • 安全多方计算之七:门限密码系统

    门限密码系统由分布式密钥生成算法、加密算法、门限解密算法三部分构成,定义如下: (1)分布式密钥生成 :这是一个由参与者共同生成公钥 y y y 的协议,协议运行结束后,每个参与者将获得一个关于私钥 x x x 的碎片、对应于该碎片的公钥密钥 y i y_i y i ​ ,以及与私钥

    2024年01月19日
    浏览(45)
  • 安全多方计算之九:不经意传输

    考虑这样的场景:A意欲出售许多个问题的答案,B打算购买其中一个问题的答案,但又不想让A知道他买的哪个问题的答案。即B不愿意泄露给A他究竟掌握哪个问题的秘密,此类场景可通过不经意传输协议实现。 不经意传输(OT,Oblivious Transfer)又称健忘传输或茫然传输,由Rabin于

    2023年04月16日
    浏览(33)
  • 【多方安全计算】差分隐私(Differential Privacy)解读

    差分隐私(Differential privacy)最早于2008年由Dwork 提出,通过严格的数学证明,使用随机应答(Randomized Response)方法确保数据集在输出信息时受单条记录的影响始终低于某个阈值,从而使第三方无法根据输出的变化判断单条记录的更改或增删,被认为是目前基于扰动的隐私保护

    2024年02月06日
    浏览(43)
  • 华为云专家出品《深入理解边缘计算》电子书上线

    华为开发者大会PaaS生态电子书推荐,助你成为了不起的开发者! 什么是边缘计算?边缘计算的应用场景有哪些? 华为云出品《深入理解边缘计算》电子书上线 带你系统理解云、边、端协同的相关原理 了解开源项目的源码分析流程 学成能够对云、边、端主流开源实现进行定

    2024年02月11日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包