Hadoop数据仓库的主要特征有哪些?

这篇具有很好参考价值的文章主要介绍了Hadoop数据仓库的主要特征有哪些?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数据仓库(英语:Data Warehouse,简称数仓、DW),是一个用于存储、分析、报告的数据系统。数据仓库的目的是构建面向分析的集成化数据环境,分析结果为企业提供决策支持(Decision Support)。

数据仓库本身并不“生产”任何数据,其数据来源于不同外部系统; 同时数据仓库自身也不需要“消费”任何的数据,其结果开放给各个外部应用使用。

Hadoop数据仓库的主要特征有面向主题性、集成性、非易失性和时变性,接下来对这四个特性做详细介绍。

面向主题性(Subject-Oriented)

主题是一个抽象的概念,是较高层次上企业信息系统中的数据综合、归类并进行分析利用的抽象。在逻辑意义上,它是对应企业中某一宏观分析领域所涉及的分析对象。

传统OLTP系统对数据的划分并不适用于决策分析。而基于主题组织的数据则不同,它们被划分为各自独立的领域,每个领域有各自的逻辑内涵但互不交叉,在抽象层次上对数据进行完整、一致和准确的描述。

Hadoop数据仓库的主要特征有哪些?

集成性(Integrated)

主题相关的数据通常会分布在多个操作型系统中,彼此分散、独立、异构。因此在数据进入数据仓库之前,必然要经过统一与综合,对数据进行抽取、清理、转换和汇总,这一步是数据仓库

建设中最关键、最复杂的一步,所要完成的工作有: 要统一源数据中所有矛盾之处;如字段的同名异义、异名同义、单位不统一、字长不一致等等。

进行数据综合和计算。数据仓库中的数据综合工作可以在从原有数据库抽取数据时生成,但许多是在数据仓库内部生成的,即进入数据仓库以后进行综合生成的。

下图说明了保险公司综合数据的简单处理过程,其中数据仓库中与“承保”主题有关的数据来自于多个不同的操作 型系统。

这些系统内部数据的命名可能不同,数据格式也可能不同。把不同来源的数据存储到数据仓库之前,需要去除这些不一致。

Hadoop数据仓库的主要特征有哪些?

非易失性、非异变性(Non-Volatile)

数据仓库是分析数据的平台,而不是创造数据的平台。我们是通过数仓去分析数据中的规律,而不是去创造修改其中的规律。因此数据进入数据仓库后,它便稳定且不会改变。

数据仓库的数据反映的是一段相当长的时间内历史数据的内容,数据仓库的用户对数据的操作大多是数据查询或比较复杂的挖掘,一旦数据进入数据仓库以后,一般情况下被较长时间保留。

数据仓库中一般有大量的查询操作,但修改和删除操作很少。

时变性(Time-Variant)

数据仓库包含各种粒度的历史数据,数据可能与某个特定日期、星期、月份、季度或者年份有关。当业务变化后会失去时效性。因此数据仓库的数据需要随着时间更新,以适应决策的需要。

从这个角度讲,数据仓库建设是一个项目,更是一个过程。文章来源地址https://www.toymoban.com/news/detail-477263.html

到了这里,关于Hadoop数据仓库的主要特征有哪些?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据开发之Hadoop(优化&新特征)

    注意:采用三台服务器即可,恢复到Yarn开始的服务器快照。 1、安全模式:文件系统只接收读数据请求,而不接收删除、修改等变更请求 2、进入安全模式场景 1)NameNode在加载镜像文件和编辑日志期间处于安全模式 2)NameNode再接收DataNode注册时,处于安全模式 3)退出安全模

    2024年01月20日
    浏览(33)
  • Hadoop是一个开源的分布式处理系统,主要用于处理和存储大量数据

    Hadoop是一个开源的分布式处理系统,主要用于处理和存储大量数据。它是由Apache软件基金会开发的,现在已经成为大数据领域中广泛使用的技术之一。 Hadoop架构 Hadoop的架构包括以下几个主要组件: Hadoop Distributed File System (HDFS) : HDFS是Hadoop的核心组件之一,它是一个分布式文

    2024年02月04日
    浏览(52)
  • 大数据之Hadoop数据仓库Hive

    Hive 是一个构建在 Hadoop 之上的数据仓库,它可以将结构化的数据文件映射成表,并提供类 SQL 查询功能,用于查询的 SQL 语句会被转化为 MapReduce 作业,然后提交到 Hadoop 上运行。 特点: 简单、容易上手 (提供了类似 sql 的查询语言 hql),使得精通 sql 但是不了解 Java 编程的人也

    2024年02月01日
    浏览(48)
  • 大数据技术之Hadoop学习(七)——Hive数据仓库

    目录 素材 一、数据仓库简介 1、数据仓库的认识 (1)数据仓库是面向主题的。 (2)数据仓库是随时间变化的。 (3)数据仓库相对稳定 (4)OLTP和OLAP 2、数据仓库的结构 (1)数据源 (2)数据存储及管理 (3)OLAP 服务器 (4)前端工具 3、数据仓库的数据模型 (1)星状模

    2024年02月17日
    浏览(42)
  • 大数据之Hadoop分布式数据仓库HBase

    HBase 是一个构建在 Hadoop 文件系统之上的面向列的数据库管理系统。 要想明白为什么产生 HBase,就需要先了解一下 Hadoop 存在的限制?Hadoop 可以通过 HDFS 来存储结构化、半结构甚至非结构化的数据,它是传统数据库的补充,是海量数据存储的最佳方法,它针对大文件的存储,

    2024年02月02日
    浏览(53)
  • 数据仓库选择Greenplum还是SQL-on-Hadoop

    Greenplum和Hadoop都是为了解决大数据并行计算而出现的技术,二者的相似点在于: 分布式存储数据在多个节点上。 采用分布式并行计算框架。 支持向外扩展来提高整体的计算能力和存储容量。 支持X86开放集群架构。 但两种技术在数据存储和计算方法上,也存在很多显而易见

    2024年02月06日
    浏览(38)
  • 一文搞懂什么是Hadoop?Hadoop的前世今生,Hadoop的优点有哪些?Hadoop面试考查重点,大数据技术生态体系

    目录 1.1 Hadoop 是什么  1.2 Hadoop 发展历史 1.3 Hadoop 三大发行版本  1.4 Hadoop优势(4高)  1.5 Hadoop 组成(面试重点)  1.5.1 HDFS 架构概述   1.5.2 YARN 架构概述   1.5.3 MapReduce 架构概述   1.5.4 HDFS、YARN、MapReduce 三者关系   1.6 大数据技术生态体系  1.7 推荐系统框架图   (1 ) Had

    2024年02月01日
    浏览(47)
  • Windows作为操作系统的典型特征和主要功能

    我是荔园微风,作为一名在IT界整整25年的老兵,今天我们来重新审视一下Windows这个我们熟悉的不能再熟悉的系统。 我们每天都在用Windows操作系统,但是其实我们每天直接在打交道的并不是Windows操作系统的内核,而是Windows操作系统的人机交互界面,这个界面其实只是Window

    2024年02月12日
    浏览(42)
  • 请简述React是什么?React的主要特点有哪些?React中有哪些主要组件?

    React是一个用于构建用户界面的JavaScript库,它由Facebook开发并开源。React的主要特点是其数据驱动和组件化的设计理念。它允许开发者将复杂的界面分解为简单的组件,并将这些组件以数据流的方式组合在一起,使得组件的状态和行为可以根据数据的变化而自动更新。React还提

    2024年02月14日
    浏览(43)
  • 数据仓库内容分享(十七):Doris实践分享:它做了哪些架构优化和场景优化?

    Apache Doris是一款开源的实时数据仓库,由百度旗下的技术团队开发。它具有高性能、高可靠性、易扩展等特点,能够满足大规模数据实时查询和分析的需求。目前,Apache Doris已经成为国内外众多企业的首选数据仓库解决方案,包括阿里巴巴、美团、京东、滴滴等知名企业。

    2024年02月21日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包