机器学习 | 降维问题

这篇具有很好参考价值的文章主要介绍了机器学习 | 降维问题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、主成分分析

二、奇异值分解

2.1 奇异值分解原理

2.2 奇异值分解实践

三、特征值与特征向量


一、主成分分析

主成分有如下特征:

  • 每个主成分是原变量的线性组合;
  • 各个主成分之间互不相关;
  • 主成分按照方差贡献率从大到小依次排列;
  • 所有主成分的方差贡献率求和为1;
  • 提取后的主成分通常小于原始数据变量的数量;
  • 提取后的主成分尽可能地保留了原始变量中的大部分信息。

我们仍以经典的鸢尾花数据集对主成分分析进行介绍。

通过导入PCA进行主成分分析。

#导入库
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris

#导入数据
data=load_iris()

#主成分分析
model=PCA()
model.fit(data.data)

#显示主成分信息
pd.DataFrame(model.transform(data.data),columns=["PC{}".format(x+1) for x in range(data.data.shape[1])])

机器学习 | 降维问题 

上述结果给出了鸢尾花数据集的4个(全部)主成分,然而选择几个主成分需要进一步判断。这里可以通过计算主成分的累计贡献率进行判断,代码如下:

import matplotlib.ticker as ticker
import matplotlib.pyplot as plt
plt.gca().get_xaxis().set_major_locator(ticker.MaxNLocator(integer=True))
plt.plot([0]+list(np.cumsum(model.explained_variance_ratio_)),"-")
plt.xlabel("Number of principal componets")
plt.ylabel("Cumulative contribution rate")
plt.show()

机器学习 | 降维问题

 从上图可以看出,主成分从0~1时非常陡峭,而从1往后区域平缓,因此,针对4维鸢尾花数据,我们只需要保留1个主成分,即将原4维数据降维到现在的1维。

利用下面的代码,我们可以用更加量化的方式查看主成分累积贡献率。

model.explained_variance_ratio_

机器学习 | 降维问题

 结果显示,1个主成分就已经达到了92.46%,保留了原数据中绝大部分信息。

综上,主成分分析的全部代码如下:

#导入库
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris

#导入数据
data=load_iris()

#主成分分析
model=PCA()
model.fit(data.data)

#显示主成分信息
pd.DataFrame(model.transform(data.data),columns=["PC{}".format(x+1) for x in range(data.data.shape[1])])

#绘制主成分的累积贡献率的折线图
import matplotlib.ticker as ticker
import matplotlib.pyplot as plt
plt.gca().get_xaxis().set_major_locator(ticker.MaxNLocator(integer=True))
plt.plot([0]+list(np.cumsum(model.explained_variance_ratio_)),"-")
plt.xlabel("Number of principal componets")
plt.ylabel("Cumulative contribution rate")
plt.show()

#量化主成分的累计贡献率
model.explained_variance_ratio_

二、奇异值分解

2.1 奇异值分解原理

奇异值分解(SVD)将一个任意矩阵进行分解,无须考虑特征值分解时需要矩阵是方阵的前提。

假设矩阵M是一个阶矩阵,则可以将其分解为下面的三个矩阵相乘:

其中:

  • U是阶正交矩阵,,为单位矩阵;
  • 是阶正交矩阵,;
  • 是阶非负实数对角矩阵,。

这种将矩阵M分解的方法就被称为奇异值分解,矩阵上对角线上的元素即为M的奇异值。

考虑一个的任意矩阵,此时的秩为n,矩阵中不同深度的灰色表示奇异值大小不同,对角线上的奇异值(假设存在n个非零的奇异值)依次从大到小进行排列。在这种情况下,矩阵U的最后m-n列失去了意义。

机器学习 | 降维问题

因此可以做进一步的变化,此时阶的矩阵U变为阶的矩阵,阶的矩阵变为阶的矩阵。

机器学习 | 降维问题

当我们取k<n,比如k=2时,即认为前两个奇异值占总奇异值之和的比例非常大,因此可以如下图进行运算,尽管此时,但是由于删除的奇异值占比很小,我们可以认为。

机器学习 | 降维问题

2.2 奇异值分解实践

利用python可以很方便实现对矩阵的奇异值分解,例如对阶的矩阵M进行奇异值分解:

 代码如下:

import numpy as np
M=np.array([[1,0,0,0,2],[0,0,3,0,0],[0,0,0,0,0],[0,4,0,0,0]])
U,Sigma,VT=np.linalg.svd(M)
print("U:",U)
print("Sigma:",Sigma)
print("VT:",VT)

机器学习 | 降维问题

 导入一张图片,下面的代码给出了地秩近似序列使用奇异值分解逼近的图片。

import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

r_max=300  #设置最大的秩
Pic="C:\\Users\\LEGION\\Pictures\\Saved Pictures\\暨大logo.png"

image=Image.open(Pic).convert("L")
img_mat=np.asarray(image)

U,s,V=np.linalg.svd(img_mat,full_matrices=True)
s=np.diag(s)

for k in range(r_max+1):
    approx=U[:,:k] @ s[0:k,:k] @ V[:k,:]
    img=plt.imshow(approx,cmap='gray')
    plt.title("SVD approximation with degree of %d"%(k))
    plt.plot()
    plt.pause(0.001)
    plt.clf()

机器学习 | 降维问题

三、特征值与特征向量

利用python与Numpy库,很容易得到一个矩阵的特征值和特征向量。

import numpy as np
A=np.array([[1,2],[3,4]])
a,b=np.linalg.eig(A)
print("A的特征值为:\n",a)
print('A的特征向量为:\n',b)

 机器学习 | 降维问题

通过np.lianlg.eig()函数得到的特征向量是已经标准化的向量, 即长度为1.改函数给出的特征值未按大小顺序排序。

除了特征值和特征向量外,协方差矩阵与相关系数矩阵也是降维分析中的重要概念。以鸢尾花的4个特征向量为例,协方差矩阵的每个元素是各个向量元素之间的协方差,相关系数矩阵的各元素是由各特征间的相关系数构成的。

import numpy as np
from sklearn.datasets import load_iris

#导入数
data=load_iris()
X=data.data

Cov_X=np.cov(X.T)  #求解协方差矩阵
Cor_X=np.corrcoef(X.T)  #求解相关系数矩阵

print("协方差矩阵:\n",Cov_X)
print("相关系数矩阵:\n",Cor_X)

机器学习 | 降维问题

利用协方差矩阵和相关系数矩阵可以求解主成分。这里以利用协方差矩阵为例进行说明。

沿用上面的协方差矩阵数据,可以求得其特征值和特征向量:

import numpy as np
from sklearn.datasets import load_iris

#导入数
data=load_iris()
X=data.data

Cov_X=np.cov(X.T)  #求解协方差矩阵

a,b=np.linalg.eig(Cov_X)
print("协方差矩阵的特征值为:\n",a)
print('协方差矩阵的特征向量为:\n',b)

机器学习 | 降维问题

协方差矩阵的特征值即为主成分的方差贡献率:

机器学习 | 降维问题

机器学习 | 降维问题机器学习 | 降维问题机器学习 | 降维问题

第一个主成分(解释方差)所占比例已经高达92.46%,说明已经可以在这个比例上解释原始数据信息,因此可以将鸢尾花数据从四维降至一维。第一主成分如下:

机器学习 | 降维问题

其中,表示该列特征的均值,等式右边的系数为协方差矩阵的特征向量的第一列(与第一个特征值相对应的数值)。 

除了协方差矩阵,相关系数矩阵也可以求解主成分。但是两种不同的求解方法结果通常会有一定的差别。此外,值得注意的是,如果对已经标准化的数据求协方差矩阵,实际上就是对原变量求相关系数矩阵。

在求解主成分时,如果变量间的单位不同,应该先将变量标准化后进行计算。否则由于单位不同导致的取值范围悬殊太大会影响最终的结果。文章来源地址https://www.toymoban.com/news/detail-477312.html

到了这里,关于机器学习 | 降维问题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [机器学习]特征工程:主成分分析

    目录 主成分分析 1、简介 2、帮助理解 3、API调用 4、案例 本文介绍主成分分析的概述以及python如何实现算法,关于主成分分析算法数学原理讲解的文章,请看这一篇: 探究主成分分析方法数学原理_逐梦苍穹的博客-CSDN博客 https://blog.csdn.net/qq_60735796/article/details/132339011 感谢大

    2024年02月12日
    浏览(46)
  • 机器学习——主成成分分析PCA

    如上图所示,一共有4个属性,身高( m为单位),身高(cm),时速(每小时公里),时速(每小时里),身高的两个属性是相关的,时速的两个属性也是相关的,我们把四组具有相关性的变量转换成了两组不相关的变量,我们把转换后的这2组变量称为它的主成分。说白了,就

    2024年01月18日
    浏览(46)
  • 【数据降维-第2篇】核主成分分析(KPCA)快速理解,及MATLAB实现

    一篇介绍了PCA算法的快速理解和应用,本章讲一下KPCA。 KPCA方法与PCA方法一样,是有着扎实的理论基础的,相关理论在论文上以及网络上可以找到大量的材料,所以这篇文章还是聚焦在方法的快速理解以及应用上,此外还会对同学们可能比较关注的参数设置方式进行说明,从

    2024年02月05日
    浏览(85)
  • 机器学习-决策树-异常检测-主成分分析

    一种对实例进行分类的树形结构,通过多层判断区分目标所属类别 本质:通过多层判断,从训练数据集中归纳出一组分类规则 优点: 计算量小,运算速度快 易于理解,可清晰查看个属性的重要性 缺点: 忽略属性间的相关性 样本类别分布不均匀时,容易影响模型表现 决策

    2024年01月21日
    浏览(33)
  • 【机器学习】独立成分分析(ICA)及Matlab实现

    独立成分分析(ICA)最初由Aapo Hyvärinen等人于1980年代提出,其起源可以追溯到对神经科学和信号处理领域的研究需求。ICA的提出主要是为了解决混合信号中盲源分离、非高斯性信号处理和自适应性估计等问题,为实际应用提供了一种有效的信号处理方法。随着研究的深入和应

    2024年02月05日
    浏览(39)
  • 【机器学习】主成分分析(PCA)算法及Matlab实现

    【问题引入】 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在多数情况下,许多变量之间可

    2024年02月04日
    浏览(50)
  • 多元回归预测 | Matlab主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型

    效果一览 文章概述 多元回归预测 | Matlab主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。 部分源码

    2024年02月13日
    浏览(48)
  • 机器学习强基计划8-1:图解主成分分析PCA算法(附Python实现)

    机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编

    2024年02月02日
    浏览(58)
  • 机器学习强基计划8-3:详细推导核化主成分分析KPCA算法(附Python实现)

    机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编

    2023年04月09日
    浏览(42)
  • 【线性代数/机器学习】矩阵的奇异值与奇异值分解(SVD)

    我们知道,对于一个 n × n ntimes n n × n 的矩阵 A A A ,如果 A A A 有 n n n 个线性无关的特征向量,则 A A A 可以相似对角化,即存在可逆矩阵 P P P 使得 A = P Λ P − 1 A=PLambda P^{-1} A = P Λ P − 1 ,其中 Λ Lambda Λ 是 A A A 的特征值组成的对角阵。 P P P 的列实际上就是 A A A 的特征向

    2024年02月10日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包