电压转电流模块电路设计原理解析

这篇具有很好参考价值的文章主要介绍了电压转电流模块电路设计原理解析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

      前言:

       在工业控制等传感器的应用电路中,输出模拟信号一般以电压形式存在。在以电压方式长距离传输模拟信号时,信号源电阻或传输线路的直流电阻等会引起电压衰减。为了避免信号在传输过程中的衰减,可增大信号接收端的输入电阻,但信号接收端输入电阻的增大,使传输线路易受外界电磁干扰,因此在长距离传输模拟信号时,不能以电压输出方式,而需把电压输出转换成电流输出。

       电压电流转换器是将输入电压信号转换成电流信号的电路,是由电压控制的电流源。 是将输入的电压信号转换成满足一定关系的电流信号,转换后的电流相当一个输出可调的恒流源,其输出电流应能够保持稳定而不会随负载的变化而变化。

       下面我们解析一款0-2.5V3.3V5V10V15V24转4-20mA电流变送器的电路设计原理。

①压控恒流电路

电压转电流模块电路设计原理解析

       这是由运放与三极管组成的压控恒流源,其原理是通过负反馈控制运放输出电压控制NPN型三极管基极到发射极的电流大小,进而控制三极管输出电流的大小,三极管工作与放大状态,运放及外围电阻组成了同相放大器,放大倍数为1+(R11/R8)=2,VCC作为三极管及运放的供电电源。         电路中的运放同相输入端的电压并非由外部输入的Ui单独控制,而是又通过了电阻R6将UB电压引入,即采样电阻R6低压则的电压,根据电阻分压,运放的同相输入端即10端电压为(Ui-UB)/2 +UB,则UA=2*((Ui-UB)/2 +UB))=Ui+UB,那么R1两端的电压差为UA-UB=Ui,即通过R1的电流为Ui/R1,由此控制Ui的大小,即可控制输出电流的大小。

       需要注意的是后级输出负载不能过大,当负载所产生的的压降大于三极管供电电源VCC时则说明负载过大,此时三极管是无法提供足够电流的。

②电压信号放大

       根据输出电流范围4-20mA,反推出Ui的对应范围为0.4-2V,则在Ui前加一级放大电路如下图:

电压转电流模块电路设计原理解析

③调零功能:

       由于模块电路对应输出的电流范围是4-20mA,那么必须保证在输入电压为0v时Ui为0.4V,即需要在同相放大器U1A同相输入端加调压电路,调压电路电压必须精准稳定,不受电源电压波动的影响,故由TL431组成以2.5V为基准电压源,经由电位器RP2分压出可调电压经过跟随器输出经由R5输入到U1A同相输入端。

      如此则可通过调节电位器RP2即可调节对应输出电流大小,则在使用模块前,通过调节RP2将输出电流调节为4mA即可。

电压转电流模块电路设计原理解析

④量程调节

       电压输入部分先通过运放构成的跟随器(输入阻抗高,输出阻抗小)输出,再经由电位器来作将输入电压衰减。经过调零操作后,可先将输入电压调节至最大值,再通过调节电位器RP1使输出电流达到20mA为止即可。

电压转电流模块电路设计原理解析

⑤模块使用步骤

       例如想要实现0-10V对应输出4-20mA电流功能,则第一步先调零操作,使输入电压先为0V,通过调节电位器RP2使输出电流达到4mA,再将输入电压调节至10V,通过调节电位器RP1,直至使输出电流达到20mA,即调节完毕,对于其他量程的调节和上述步骤一致。

      注意:后级输出负载不能过大,当负载所产生的的压降大于三极管供电电源VCC时则说明负载过大,此时三极管是无法提供足够电流的。

⑥模块整体原理图

电压转电流模块电路设计原理解析

模块实物链接:https://item.taobao.com/item.htm?spm=a213gs.20824378.0.0.39484831KcEwuN&id=678686293476文章来源地址https://www.toymoban.com/news/detail-477503.html

到了这里,关于电压转电流模块电路设计原理解析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【硬件设计】INA282电流采集电路

    电路原理图和PCB提取方式(立创EDA文件): 关注微信公众号:码上芯路人 私信:硬件设计 电流采集电路是一种用于检测电路中电流的电路。它通常由电流传感器、信号调理电路和模数转换器(ADC)组成。其主要功能是将输入电流转换为电压信号,并对信号进行放大、滤波和

    2024年02月12日
    浏览(71)
  • 浪涌电流——原因、影响、保护电路和设计技术

    电子电路的耐用性和可靠性在很大程度上取决于考虑各种可能性的设计情况,这实际上可能在产品实际使用时发生。对于AC-DC 转换器或SMPS 电路等所有电源单元尤其如此,因为它们直接连接到交流电源和变化的负载,这使得它们容易受到过压、电压尖峰、过载等的影响。这就

    2024年02月09日
    浏览(34)
  • 【电路原理学习笔记】第2章:电压、电流和电阻:2.6 电路

    2.6.1 电流的方向 电流方向有两种说法,一种按电子流动方向,另一种是传统的认为从正极流出到负极,这本教材采用传统电流方法。(事传统派,维新派输了,1!5!) 2.6.2 基本电路 一般说来, 电路 是由电压源、负载,以及电压源和负载之间的电流路径组成的。 电路原理

    2024年02月12日
    浏览(31)
  • 【电路原理学习笔记】第2章:电压、电流和电阻:2.1 原子结构

    元素 :不能用化学方法分解成更简单形式的物质称为元素。 原子 :原子是体现元素特性的最小粒子。 原子核 :原子核由质子和中子组成, 质子 带有正电荷, 中子 呈中性。 电子 带有负电荷,围绕着原子核运动。质子上的正电荷和电子上的负电荷是可以彼此孤立存在的最

    2024年02月12日
    浏览(40)
  • Virtuoso IC618-10uA电流基准的二级Miller补偿运放电路设计

    以带隙电路中的放大器为例,其主要作用是使两个输入点的电平相等,所以只要增益足够就可以了,另外为了防止振荡,相位裕度也要足够,其他指标不是特别重要。下图为放大器提供偏置电流为理想电流源,在实际工艺制造过程中一般做不出理想电流源。 由一个电流镜做负

    2023年04月25日
    浏览(32)
  • LM2596/LM2596S多路降压稳压DC-DC开关电源芯片详解(第二部分:电路设计)(12V转5V、12V转3.3V、任意电压转任意电压)

    目录 一、固定电压(3.3/5/12V)模块设计实例 1.设计条件:VOUT=5V,VIN(MAX)=12V,ILOAD(MAX)=3A 2.设计步骤: (1)电感的选择(L1) (2)输出电容的选择(COUT) (3)吸纳二极管的选择(D1) (4)输入电容的选择(CIN) (5)100nf电容(C1、C2) 二、可调电压(ADJ)模块设计实例 1

    2024年03月16日
    浏览(40)
  • 【电路设计】缓启动电路的工作原理

    【摘要】 通信产品一般采用分散供电方式,各单板上采用DC/DC模块将-48V电源转换为其所需的5V、3.3V、2.5V等子电源。由于输入电压高,电源电路中又存在用于滤波和防止DIP的大电容,在单板插入上电时,会对-48V电源造成冲击,瞬时大电流将造成-48V电源电压出现跌落,可能影响

    2024年02月08日
    浏览(32)
  • 硬件电路设计原理图设计

    叶倾城-硬件原创的个人空间_哔哩哔哩_Bilibili 硬件电路设计原理图设计第二季-1-40课已更新完成啦!!! 第三季硬件电路设计原理图设计敬请期待!感谢大家的支持! 第01课------硬件实战-硬件电路设计的方法和技巧 第02课------千兆(十兆、百兆、千兆自适应)以太网电路设计

    2023年04月15日
    浏览(41)
  • 实验三 基于FPGA的数码管动态扫描电路设计 quartus/数码管/电路模块设计

    源文件的链接放在最后啦 实验目的: (1) 熟悉7段数码管显示译码电路的设计。 (2) 掌握数码管显示原理及静态、动态扫描电路的设计。 实验任务: (1) 基本任务1:利用FPGA硬件平台上的4位数码管做静态显示,用SW0-3输入BCD码,用SW4-7控制数码管位选; (2) 基本任务

    2024年02月07日
    浏览(42)
  • 原理图-电源电路设计

    电源电路是指提供给用电设备电力供应的电源部分的电路设计,使用的电路形式和特点。既有交流电源也有直流电源 电源电路一般可分为开关电源电路,稳压电源电路,稳流电源电路,功率电源电路,逆变电源电路,DC-DC电源电路,保护电源电路等 我目前在设计电路板时,大

    2024年02月14日
    浏览(29)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包