无人机+ AI 图像分析:里斯本大学高效检测林业害虫

这篇具有很好参考价值的文章主要介绍了无人机+ AI 图像分析:里斯本大学高效检测林业害虫。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

内容一览:早期发现虫害对于因地制宜采取防控措施至关重要。尽管遥感技术可用于快速扫描大面积区域,但面对低强度信号或难以检测的物体,其效果并不尽如人意。因此,里斯本大学研究人员将无人机与 AI 图像分析相结合,在此基础上测试了两种深度学习方法—— FRCNN 及 YOLO 来检测早期松异舟蛾巢穴,并且效果显著。

关键词:AI  算法   害虫检测   YOLO

本文首发自 HyperAI 超神经微信公众平台~文章来源地址https://www.toymoban.com/news/detail-477548.html

当下,森林资源减少和环境恶化愈加严重,森林害虫已然成为全球森林保护的重要挑战之一。其中,松异舟蛾 (Thaumetopoea pityocampa) 这类具有破坏力的害虫引起了广泛重视。松异舟蛾主要分布在欧洲南部、地中海和北非地区,其幼虫会在松树的树干和枝条上钻洞啃食,破坏松树的生长和发育。

为了早期检测和防控松异舟蛾,里斯本大学 (University of Lisbon) 研究人员比较了两种深度学习算法,以解决无人机图像中的巢穴识别难题。目前该研究已发布在《NeoBiota》期刊,标题为「Testing early detection of pine processionary moth Thaumetopoea pityocampa nests using UAV-based methods」。

无人机+ AI 图像分析:里斯本大学高效检测林业害虫

该研究成果已发表在《NeoBiota》上

论文地址:

https://neobiota.pensoft.net/article/95692/

实验概述

过往,科研人员通常借助遥感技术(卫星等)和多光谱相机结合,得到一定区域内的森林覆盖图像,并从树冠颜色、死树位置等信息判断整体虫害情况。然而,由于图像分辨率很低,无法检测到单个树木虫害情况。因此,本实验中研究人员提出了由无人机采集图像的方式。这样,无人机能够接近单个树木并对它们进行更细致的扫描和采集。

研究人员在无人机获取的图像上,测试了两种深度学习方法——Faster R-CNN (FRNN) 及 YOLO 来检测早期松异舟蛾巢穴(以下简称巢穴),具体实验过程如下:

研究选址 

研究人员在法国、意大利和葡萄牙各选择了 1 个研究地点。如图 1 所示,这 3 个地点之间树龄、密度等特征均不相同。

无人机+ AI 图像分析:里斯本大学高效检测林业害虫

图 1:研究地点情况

a:葡萄牙松树林

b:法国松树林

c:意大利黑松林

在 3 个地点中,研究人员都采用了地面计数 (2 名观察员分别目测树木两侧)  来检测巢穴数量,除此之外,图 1b 所示的法国松树林中,研究人员还站在一个位于树冠上方 2 米的移动平台上,来检测巢穴数量。

数据集 

研究人员使用了无人机加高清摄像头的方式采集了 3 个样地的图像,其中高清 (HD) 摄像机 (RGB HD SONY Alpha 7R) 最佳应用性能方案确定为:采用具有 35mm 焦距和至少 36 Mpix 分辨率的 RGB HD 传感器,而无人机则选择了 DJI Matrice 300 多旋翼无人机平台,并制定了 80% 的航迹内部和横跨航迹的重叠度。

最终,研究人员得到了无人机收集的 22,904 张图像作为数据集,并通过数据增强技术,如改变亮度、色调、噪声及图像压缩等操作无人机图像,生成新的数据集,使模型更好地学习和泛化。其中,该数据集的 80% 用于模型训练,20% 用于测试

实验过程

无人机模型 

考虑到一些巢穴只能从侧面看到,研究人员用模型检测主要针对的是单张无人机正射图像而非全局正射图像,因为全局图像是垂直视角,容易造成遗漏。无人机正射图像是指通过对无人机采集的图像进行处理,使其在地图上的位置和比例与现实世界中的位置和比例一致。

研究团队训练了基于 FRCNN 和 YOLO 的两种深度学习模型,同时为了评估模型检测无人机图像的结果,还配备 1 名观测员对每张图像上的巢穴数量进行了视觉评估。

研究人员使用了 F1 得分具体衡量模型与人眼检测 (human eye) 在无人机、地面图像上的性能其中 F1 得分计算公式如下图:

无人机+ AI 图像分析:里斯本大学高效检测林业害虫

图 2:F1 计算公式

F1 得分是精确率和  召回率 的  调和平均 值,可用来评估模型的准确性和完整性。其取值范围为 0 到 1,越接近 1 表示模型的性能越好。

实验结果 

研究人员将 FRCNN 及 YOLO 模型与人眼检测进行了比较,测试了模型在检测树上有无巢穴存在 (% infested trees) 和巢穴数量 (No. PPM nests) 的性能。

无人机+ AI 图像分析:里斯本大学高效检测林业害虫

表 1:不同方式检测松异舟蛾巢穴情况

如表 1 所示,通过地面计数,人眼对整个研究范围内树木一共目测到 665 个巢穴;而通过目测无人机图像,则检测到 222 个巢穴。研究人员认为造成二者差异的原因是地面目测具有多维观测角度,而无人机局限于从上方进行拍摄。不过,无人机图像具有其自身优势,因为地面详细检测需要耗费较高成本,而无人机可以告知人们存在的风险并进一步采取行动进行详细的地面检测。

下图是两种模型在 3 个样地无人机图像上的巢穴存在检测和每棵树上巢穴数量检测的 F1 得分。

无人机+ AI 图像分析:里斯本大学高效检测林业害虫

图 3:两种模型对无人机图像检测 F1 得分

a:检测无人机图像上的巢穴存在

b:检测每棵树上巢穴数量

如图 3 所示,检测无人机图像上的巢穴,YOLO 模型 F1 得分高达 0.826,检测每棵树上巢穴数量,YOLO 模型 F1 得分高达 0.696。同时,研究人员发现 YOLO 模型的检测性能高于 FRCNN。下图是在不同研究地点(不同松树品种),两种模型在检测无人机图像时的 F1 得分。

无人机+ AI 图像分析:里斯本大学高效检测林业害虫

图 4:不同研究地点,两种模型 F1 得分

a: 检测无人机图像上的巢穴存在

b: 检测每棵树上巢穴数量

如图 4 所示,在 3 个样地,无论是检测巢穴存在还是检测每棵树上巢穴的数量,YOLO 模型 F1 得分均优于 FRCNN 模型。

综上,研究人员提出,无人机和 AI 模型相结合能够有效地对松异舟蛾巢穴进行早期检测。其中,无人机有如下优点:

  • 高效性:无人机可以快速地覆盖大面积的地区,收集大量的数据。
  • 高精度:无人机搭载的高分辨率相机可以捕捉到非常精细的图像和视频,从而使无人机可以提供高精度的数据。

针对无人机图像上的巢穴检测及巢穴数量检测,YOLO 模型都表现优异。这表明相关技术的结合,在监测和管理森林中的害虫和病害方面具有重要意义,同时也为保护森林生态系统提供了新的思路。

无人机+ AI:科技领域的重要趋势

目前看来,无人机+ AI 已成为国内外森林保护发展的共识。通过无人机的高空视角和  人工智能 的分析,研究人员执行任务时能够更高效、准确和自动化,从而改善森林保护效率。

聚焦国内,中国科学院发布的「森林病虫害遥感监测——从卫星到无人机」报告中详细介绍了森林病虫害的类型、发展阶段以及检测方法,并提出未来森林保护工作的重要方向之一正是发展预测模型,实现预测和检测方法的无缝对接,这与本论文的研究成果不谋而合。

报告地址:

https://bit.ly/3oJgDWf

可以看到,无人机+ AI 为森林保护工作带来了新的机遇和挑战,为提升效率和保护森林资源发挥了重要作用。然而,无人机与人工智能的融合同时也面临一系列挑战。一方面,需要不断推动无人机和人工智能的发展,提高性能和稳定性。另一方面,在数据安全和隐私保护方面,需要相关政策和规范,以确保无人机和人工智能应用能安全地处理和存储数据。

本文首发自 HyperAI 超神经微信公众平台~

到了这里,关于无人机+ AI 图像分析:里斯本大学高效检测林业害虫的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 无人机航拍图像数据集汇总

    最近的项目涉及到对无人机航拍图像的目标检测,检测的目标包含车辆、人、无人机、船舶,比较热门的航拍数据集大多是遥感图像的数据集,与本项目相关的数据集查找不易,本文分享一下相关的航拍数据数据集,以及数据集的处理方法。 文中部分数据集已经下载,需要获

    2024年02月03日
    浏览(46)
  • 无人机采集图像的相关知识

     1.飞行任务规划         一般使用飞行任务规划软件进行飞行任务的设计,软件可以自动计算相机覆盖和图像重叠情况。比如ArduPilot (ArduPilot - Versatile, Trusted, Open) 和UgCS (http://www.ugcs.com)是两个飞行任务规划软件,可以适用大多数无人机系统。 2.图像重叠度         理

    2024年03月26日
    浏览(50)
  • 无人机航拍图像拼接与目标识别

     一、简介      无人机用来做图像侦察是常见功能,现有技术基本是无人机对某片区域进行飞行,人工实时监控飞行图像,将图像录制成视频供事后回放。此方法对人员业务要求比较高、反应速度足够快、不利于信息收集、录制视频丢失空间信息、对于后期开展区域分析困

    2024年02月07日
    浏览(57)
  • 无人机航拍图像的空间分辨率计算

    GSD:无人机/遥感卫星的空间分辨率,指航片/遥感影像一个像素点代表的空间距离。 计算公式: d:单位cm、指空间分辨率。 s:单位µm、指像元大小(像素间距)。 H:单位m、指飞行高度。 f:单位mm、指焦段(即镜头的焦段)。 注意:计算时统一单位。同时,更值得注意的

    2024年02月01日
    浏览(54)
  • 浅谈无人机遥感图像拼接与处理方法

    遥感(RS-Remote Sensing)——不接触物体本身,用传感器收集目标物的电磁波信息,经处理、分析后,识别目标物,揭示其几何、物理性质和相互关系及其变化规律的现代科学技术。 换言之,即是“遥远的感知”,按传感器搭载平台划分,包括航天遥感、航空遥感、地面遥感。

    2024年02月16日
    浏览(56)
  • 使用低空无人机图像对树种进行实例分割

    在这项试点研究中,利用低空无人机图像开发了一种针对当地树种的机器学习实例分割模型,用于生态调查目的。实例分割包括个体树冠描绘和物种分类。 20 种树种及其相关学名已通过无人机图像进行了训练和收集,用于机器学习过程。为了评估 ML 模型的准确性,半监督分

    2024年04月14日
    浏览(40)
  • 无人机航拍图像匹配——SIFT算法实践(含代码)

    SIFT(Scale-Invariant Feature Transform)算法是由David Lowe于1999年提出的一种用于图像处理和计算机视觉中的特征提取和匹配方法。它在航拍图像匹配中具有重要的意义,主要体现在以下几个方面: 尺度不变性 :航拍图像通常具有大范围的尺度变化,例如拍摄距离目标较远或较近的

    2024年02月04日
    浏览(50)
  • 多旋翼无人机调试问题分析

    一、电机和螺旋桨检查 在多旋翼无人机的调试过程中,首先需要检查电机和螺旋桨的状态。电机应转动灵活,无卡滞现象,且无明显磨损。螺旋桨应安装牢固,无松动现象,且桨叶完好无损。若发现问题,应及时更换或维修。 二、电池和充电器检查 电池是无人机飞行的能量

    2024年01月24日
    浏览(64)
  • 《基于改进YOLOv5的无人机图像检测算法》论文阅读

    原文链接:UAV Recognition and Tracking Method Based on YOLOv5 | IEEE Conference Publication | IEEE Xplore 《基于改进YOLOv5的无人机图像检测算法》论文阅读        基于深度学习的目标检测算法通常对传统目标检测效果较好,但对小目标的检测精度较低。针对该问题,该文通过对无人机采集图像

    2024年02月14日
    浏览(50)
  • 多旋翼无人机振动分析与减振方法

    振动机制包括: 激励(振动源) 系统 响应 无人机振动机制: 激励 —— 动力系统(旋翼+电机) 系统 —— 机架 响应 —— 传感器(惯导) 无人机振动来源: 动不平衡,振动频率等于旋转频率 单个旋翼产生的周期性气动力(升力波),引起的振动二次谐波 多个旋翼流场相

    2024年02月10日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包