皮尔逊相关系数及假设检验

这篇具有很好参考价值的文章主要介绍了皮尔逊相关系数及假设检验。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、看两者是否算相关要看两方面:显著水平以及相关系数
(1)显著水平,就是P值,这是首要的,因为如果不显著,相关系数再高也没用,可能只是因为偶然因素引起的,那么多少才算显著,一般p值小于0.05就是显著了;如果小于0.01就更显著;例如p值=0.001,就是很高的显著水平了,只要显著,就可以下结论说:拒绝原假设无关,两组数据显著相关也说两者间确实有明显关系.通常需要p值小于0.1,最好小于0.05设甚至0.01,才可得出结论:两组数据有明显关系,如果p=0.5,远大于0.1,只能说明相关程度不明显甚至不相关.起码不是线性相关.
(2)相关系数,也就是Pearson Correlation(皮尔逊相关系数),通常也称为R值,在确认上面指标显著情况下,再来看这个指标,一般相关系数越高表明两者间关系越密切.
R>0 代表连个变量正相关,即一个变大另一个随之变大
————————————————
版权声明:本文为CSDN博主「xiaocong1990」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/xiaocong1990/article/details/71267144
二、显著性水平P值
讨论两变量是否相关必须讨论显著性水平,不谈P值之谈相关系数大小是无意义的,两者之间的相关关系可能只是偶然因素引起的,所以我们要对两个变量之间的相关关系的显著性水平进行判断;
采用假设检验的方法:
原假设H0: R=0 两变量之间不存在线性关联
备择假设H1: R不等于0,两变量之间存在线性关联

根据假设检验方法,在零假设成立的条件下,即假设两变量不存在相关性的前提下,计算出两变量不存在相关性的概率值(P值),如果这个P值很小,说明两变量不存在相关性的概率很小,我们就可以拒绝原假设,接受备择假设,那么这里我们就需要一个阈值
通常以5%为阈值(这里的阈值也称为显著水平),如果 p<0.05,则说明可以拒绝原假设。接受备择假设,即两变量之间存在显著的线性关联
所以当p值远大于 0.05时,即使相关系数很大,我们也不能说两变量之间存在明显相关性;而且一般要先在p值满足要求的前提下再去谈相关系数的大小。
————————————————
版权声明:本文为CSDN博主「Jared_Yang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_37007384/article/details/102662104

三、在清风数学建模视频中提到了皮尔逊相关系数假设检验条件:皮尔逊相关系数及假设检验文章来源地址https://www.toymoban.com/news/detail-477790.html

到了这里,关于皮尔逊相关系数及假设检验的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模.皮尔逊相关系数

    一.前言 皮尔逊相关系数说白了就是一次函数中的斜率k,反应两个变量之间的关系,与斜率不同的地方在于其数值在1和-1之间,越接近于1,则说明两个变量之间是完全正向的线性关系;越接近于-1,说明两个变量之间是完全负向的线性关系。(本文是作者在学习清风的建模网课

    2024年02月01日
    浏览(51)
  • js计算皮尔逊相关系数

    代码如下; 调用:  效果:

    2024年01月25日
    浏览(41)
  • 数学建模学习笔记-皮尔逊相关系数

    内容:皮尔逊相关系数 一.概念:是一个和线性线关的相关性系数 1.协方差概念: 协方差受到量纲的影响因此需要剔除 2.相关性的误区 根据这个结论,我们在计算该系数之前需要确定是否为线性函数 二.相关性的计算 1.Matlab:只含相关性不含假设检验:下面第三大点讲解假设

    2024年02月20日
    浏览(44)
  • [皮尔逊相关系数corrwith]使用案例:电影推荐系统

    协同过滤算法用于发现用户与物品之间的相关性,主要有两种:基于用户的和基于物品的。 基于用户: 用户1购买了物品A、B、C、D,并给了好评;而用户2也买了A、B、C,那么认为用户1和用户2是同类型用户,也可以把D推荐给用户2。 基于物品: 物品A和物品B都被用户1、2、

    2024年02月10日
    浏览(38)
  • 皮尔逊相关系数及代码实现(C语言+MATLAB)

    皮尔逊相关系数,常用于度量两个变量X和Y之间的相关性(线性相关)。本文通过介绍其 概念定义、数学公式 ,进而引出其 适用场合 ,并基于 MATLAB和C语言 对皮尔逊相关系数分别进行了 代码实现 。 在统计学中, 皮尔逊相关系数( Pearson correlation coefficient) ,又称皮尔逊积

    2024年02月06日
    浏览(42)
  • 使用Python计算皮尔逊相关系数,并用热力图展示

           由于是自我练习的笔记,所以这里先通过Pandas随机生成一部分时序数据,然后再调用corr()函数来计算皮尔逊相关系数,并把计算结果先展示输出出来,最后通过热力图的方式把计算结果展现出来。    下面是开发的具体过程: 1、首先导入需要的算法包 2、生成数据(

    2024年02月09日
    浏览(33)
  • 概率论:方差、标准差、协方差、皮尔逊相关系数、线性相关

    一个随机变量,的值的变化程度可以用方差计算:  ;其中 是期望。 另外一种等价表达式:      其中为均值,N为总体例数 我们举个例子: 服从均一分布,取值为0.1,0.2,0.3,0.4,0.5 ,每种值的概率是20%,可算出期望是0.3,那么方差就是: 标准差是方差的平方根,随机

    2024年02月09日
    浏览(49)
  • 数学建模:相关性分析学习——皮尔逊(pearson)相关系数与斯皮尔曼(spearman)相关系数

    目录 前言 一、基本概念及二者适用范围比较 1、什么是相关性分析 2、什么是相关系数 3、适用范围比较 二、相关系数 1.皮尔逊相关系数(Pearson correlation) 1、线性检验 2、正态检验 3、求相关系数 2、斯皮尔曼相关系数(Spearman correlation) 1、秩相关系数 2、使用条件 3、求相

    2024年01月17日
    浏览(43)
  • 【生物信息学】单细胞RNA测序数据分析:计算亲和力矩阵(基于距离、皮尔逊相关系数)及绘制热图(Heatmap)

      计算亲和力矩阵,一般按照以下步骤进行: 导入数据:加载单细胞RNA测序数据集。 数据预处理:根据需要对数据进行预处理,例如 基因过滤 、 归一化 等。 计算亲和力:使用合适的算法(例如, 欧几里德距离 、 Pearson相关系数 或其他距离/相似度度量)计算样本之间的

    2024年02月06日
    浏览(47)
  • Pearson correlation皮尔逊相关性分析

    在参数检验的相关性分析方法主要是皮尔逊相关(Pearson correlation)。既然是参数检验方法,肯定是有一些前提条件。皮尔逊相关的前提是必须满足以下几个条件: 变量是连续变量; 比较的两个变量必须来源于同一个总体; 没有异常值; 两个变量都符合正态分布。 正态分布

    2024年02月15日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包