YOLO v8!| 附教程+代码 以及 vs YOLOv6 v3.0

这篇具有很好参考价值的文章主要介绍了YOLO v8!| 附教程+代码 以及 vs YOLOv6 v3.0。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文是我关于YOLOv8的经验和实验,以及和YOLOv6 v3.0的相关对比。

Part 1 - YOLOv8 

YOLO v8!| 附教程+代码   以及 vs YOLOv6 v3.0

Joseph Redmon、Santosh Divvala、Ross Girshick和Ali Farhadi推出了YOLO(You Only Look Once)系列计算机视觉模型,引起了许多人工智能爱好者的关注和喜爱。2023年1月10日,YOLO的最新版本——YOLO8发布,声称在结构和架构方面进行了改进,并获得了更好的结果。

介绍

我尝试了来自Ultralytics的全新、尖端、最先进的YOLO v8。YOLO v6和v7版本在1-2个月的时间内发布给公众。两者都是基于PyTorch的模型。

即使它的前身YOLO v5也有一个基于PyTorch的模型。几天前[或者我们可以说几个小时前],YOLO v8发布了。我想,如果我尝试在相同的参数上检查它会怎样?上次我使用了coco数据集,但这次我使用了车牌检测问题。

数据集

该数据集有近800张训练图像,226张验证图像和113张测试图像。我们使用的所有图像都是原始的,没有进行增强。

YOLO v8!| 附教程+代码   以及 vs YOLOv6 v3.0

Epochs

        我们故意将epochs保持在100以查看其在热身迭代中的性能。

模型

        基于PyTorch的YOLO v5、v6、v7和v8。

YOLOv8是一个尖端、最先进的(SOTA)模型,它建立在以前YOLO版本的成功基础上,引入了新的功能和改进,进一步提高了性能和灵活性。

YOLO v8!| 附教程+代码   以及 vs YOLOv6 v3.0

与其他YOLO的比较

它使用无锚检测和新的卷积层使预测更准确。

YOLO v8!| 附教程+代码   以及 vs YOLOv6 v3.0

V8不同版本的比较

结果

        YOLO 8在RF100上获得的结果比其他版本要好。

YOLO v8!| 附教程+代码   以及 vs YOLOv6 v3.0

V8不同版本

在自定义数据集上的结果

        现在让我们看看这个YOLO v8在自定义数据集上是否真的有效。下面是YOLO v8在车牌检测问题上的结果。

YOLO v8!| 附教程+代码   以及 vs YOLOv6 v3.0

相同数据集的相同epoch的训练时间

在预定义的epoch训练后,我计算了所有平均精度的平均值。

YOLO v8!| 附教程+代码   以及 vs YOLOv6 v3.0

自定义数据集上所有版本YOLO的映射值

上面的图表显示了v8的性能优于其他版本。它以较少的训练时间给我们最大的映射值。无锚检测比以前的版本更快更准确。

任何模型的工作和性能完全取决于数据和问题陈述,但新的改进使事情变得更好。这次我们没有考虑延迟,但这些结果对进一步分析可能有用。

改进

YOLOv8的可扩展性是一个重要特性。它被创建为一个框架,可以与所有先前的YOLO迭代一起工作,这使得在它们之间轻松切换并评估它们的性能变得简单。因此,YOLOv8是最好的选择,对于那些希望从最新的YOLO技术中受益,同时保持其当前的YOLO模型功能。

观察

    • 如我们所见,训练时间是一个大问题,如果考虑从v5到v7的指数增长,但是v8花费了近60%的时间进行训练,同时产生了更高的平均精度。在这里,长时间训练的问题得到了一定的解决。 

    • 在v8中更好地实现了训练时间和精度之间的平衡。 

    • 新的骨干网络、新的无锚检测头和新的损失函数使事情变得更快。

相关链接:

  1. YOLOv8 repository — V8

  2. code differential — V8

  3. Understanding YOLOs

  4. Understanding V8

  5. Docs V8

  6. Understanding V8- Video

Part 2 - YOLOv6 v3.0 vs YOLOv8 

YOLOv6 v3.0 和 YOLOv8 都是由不同组织开发的最先进的目标检测系统。它们旨在实时检测物体,因此非常适用于自动驾驶汽车、安全系统等许多应用场景。

YOLOv6 v3.0 由美团团队开发。它是 YOLOv6 系列目标检测模型的最新版本,拥有几个不同的模型,如 YOLOv6-N、YOLOv6-S、YOLOv6-M/L,适用于不同的工业场景,如纳米、小型、中型、大型等。YOLOv6 v3.0 的评估与早期版本的 YOLOv6 保持一致,重点是部署时的吞吐量和 GPU 延迟。

YOLO v8!| 附教程+代码   以及 vs YOLOv6 v3.0

使用YOLOv8进行安全帽检测

美团团队使用FP16精度在相同的Tesla T4 GPU上使用TensorRT测试了所有官方模型的速度性能,并将升级的YOLOv6与YOLOv5、YOLOX、PPYOLOE、YOLOv7和YOLOv8进行了比较。比较结果显示,与YOLOv5-N相比,YOLOv6-N有了显着的9.5%的进步,同时在吞吐量和延迟方面表现出最佳的速度性能。YOLOv6-S可以将AP提高3.5%以上,比YOLOX-S高0.9%,速度更快。YOLOv6-M比YOLOv5-M提高了4.6%的AP值,速度相似,而且在更快的速度下比YOLOX-M和PPYOLOE-M分别高出3.1%和1.0%的AP。

另一方面,YOLOv8是由Ultralytics开发的,被认为是YOLO模型的最新和最先进的版本。YOLOv8以其快速的处理速度、高精度和能够检测单个图像中的多个对象而著称。它还拥有新的骨干网络、一种设计,使得与YOLO系列旧模型的性能比较变得更加容易,新的损失函数和新的无锚定检测头。

YOLOv6 v3.0和YOLOv8之间的一个主要区别是两个系统的重点。YOLOv6 v3.0是专门为工业应用而设计的,并针对不同场景设计了不同的模型。而另一方面,YOLOv8是一种更通用的目标检测系统,适用于广泛的用例。

YOLO v8!| 附教程+代码   以及 vs YOLOv6 v3.0

YOLO比较

两个系统之间的另一个差异是它们提供的精度水平。YOLOv6 v3.0的精度略低于YOLOv8,但它通过更快的处理速度和更低的延迟来弥补这一点。这使它更适合速度至关重要的实时应用程序。另一方面,YOLOv8提供了更高的精度,使其成为对精度至关重要的应用程序的更好选择。

YOLO v8!| 附教程+代码   以及 vs YOLOv6 v3.0

使用YOLOv8/R/v7进行CS-GO项目

总之,YOLOv6 v3.0和YOLOv8都是功能强大的目标检测系统,为不同的用例提供了独特的优势。YOLOv6 v3.0更适用于速度比精度更重要的工业应用,而YOLOv8则更为通用,提供更高的精度。这两个系统都在不断发展和更新,以提供更好的性能和开发体验。选择两者之间的一个取决于项目的具体要求以及速度和精度之间的权衡。

·  END  ·

HAPPY LIFE文章来源地址https://www.toymoban.com/news/detail-477883.html

到了这里,关于YOLO v8!| 附教程+代码 以及 vs YOLOv6 v3.0的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能学习07--pytorch21--目标检测:YOLO系列理论合集(YOLOv1~v3)

    如果直接看yolov3论文的话,会发现有好多知识点没见过,所以跟着视频从头学一下。 学习up主霹雳吧啦Wz大佬的学习方法: 想学某个网络的代码时: 到网上搜这个网络的讲解 → 对这个网络大概有了印象 → 读论文原文 ( 很多细节都要依照原论文来实现, 自己看原论文十分

    2024年02月10日
    浏览(73)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的动物识别系统(Python+PySide6界面+训练代码)

    摘要:本博客文章深入解析了基于深度学习的动物识别系统的完整代码,并展示了采用领先的YOLOv8算法的实现代码。该系统与YOLOv7、YOLOv6、YOLOv5等早期版本的性能进行了比较,可以从静态图像到实时视频流的各种媒介中识别动物的高效性和准确性。文章不仅详尽地阐释了YOL

    2024年03月27日
    浏览(50)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的疲劳驾驶检测系统(Python+PySide6界面+训练代码)

    摘要:本研究详述了一种采用深度学习技术的疲劳驾驶检测系统,该系统集成了最新的YOLOv8算法,并与YOLOv7、YOLOv6、YOLOv5等早期算法进行了性能评估对比。该系统能够在各种媒介——包括图像、视频文件、实时视频流及批量文件中——准确地识别疲劳驾驶行为。文章深入阐述

    2024年04月24日
    浏览(102)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的快递包裹检测系统(Python+PySide6界面+训练代码)

    摘要:本文介绍了一种基于深度学习的快递包裹检测系统的代码,采用最先进的YOLOv8算法并对比YOLOv7、YOLOv6、YOLOv5等算法的结果,能够准确识别图像、视频、实时视频流以及批量文件中的快递包裹。文章详细解释了YOLOv8算法的原理,并提供了相应的Python实现代码、训练数据集

    2024年03月28日
    浏览(54)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的布匹缺陷检测系统(Python+PySide6界面+训练代码)

    摘要:本文介绍了一种基于深度学习的布匹缺陷检测系统的代码,采用最先进的YOLOv8算法并对比YOLOv7、YOLOv6、YOLOv5等算法的结果,能够准确识别图像、视频、实时视频流以及批量文件中的布匹缺陷。文章详细解释了YOLOv8算法的原理,并提供了相应的Python实现代码、训练数据集

    2024年03月15日
    浏览(67)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的生活垃圾检测与分类系统(Python+PySide6界面+训练代码)

    摘要:本篇博客详细讲述了如何利用深度学习构建一个生活垃圾检测与分类系统,并且提供了完整的实现代码。该系统基于强大的YOLOv8算法,并进行了与前代算法YOLOv7、YOLOv6、YOLOv5的细致对比,展示了其在图像、视频、实时视频流和批量文件处理中识别生活垃圾的准确性。文

    2024年04月29日
    浏览(42)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的玉米病虫害检测系统(Python+PySide6界面+训练代码)

    摘要:本文介绍了一种基于深度学习的玉米病虫害检测系统系统的代码,采用最先进的YOLOv8算法并对比YOLOv7、YOLOv6、YOLOv5等算法的结果·,能够准确识别图像、视频、实时视频流以及批量文件中的玉米病虫害。文章详细解释了YOLOv8算法的原理,并提供了相应的Python实现代码、

    2024年02月22日
    浏览(55)
  • ubuntu18.04复现yolo v8环境配置之CUDA与pytorch版本问题以及多CUDA版本安装及切换

    最近在复现yolo v8的程序,特记录一下过程 环境:ubuntu18.04+ros melodic 小知识:GPU并行计算能力高于CPU—B站UP主说的 Ubuntu可以安装多个版本的CUDA。如果某个程序的Pyorch需要不同版本的CUDA,不必删除之前的CUDA,可以实现多版本的CUDA切换 一、查看当前PyTorch使用的CUDA版本: 注意

    2024年02月11日
    浏览(52)
  • 一点就分享系列(实践篇6——上篇)【迟到补发_详解v8】YOLO-High_level系列融入YOLOv8 旨在研究和兼容使用【3月份开始持续补更】

    题外话 [ 最近一直在研究开放多模态泛化模型的应用事情,所以这部分内容会更新慢一些,文章和GITGUB更新并不同步,git基本都是第一时间更新,感兴趣可以跟进研究和PR]去年我一直复读机式强调High_level在工业界已经饱和的情况,目的是呼吁更多人看准自己,不管是数字孪生

    2023年04月15日
    浏览(81)
  • YOLOv6 学习笔记

    yolov6 出来的时候 yolov7 已经出了。 YOLOv6设计主要包含以下几个方面: 网络架构设计:对于Backbone和Neck,延续了YOLOv4和YOLOv5的 PAN架构思想 并使用了 重参思想 进行了改进;关于Head部分,作者对Decoupled Head进行了 简化 并将其命名为 Efficient Decouple Head(EDH) ; 标签匹配:对TaskAl

    2024年02月19日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包