【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

这篇具有很好参考价值的文章主要介绍了【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

TOPSIS简介

客观评价方法中的一种,亦称为理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最优解和最劣解,通过计算每个方案到理想方案的相对贴近度,即靠近止理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。

方法和原理

数学定义

数学语言描述

设多属性决策方案集为D={d1,d2,…,dm},衡量方案优劣的属性变量为x1,…,xn,,这时方案集D中的每个方案di( i= 1,…,m )的n个属性值构成的向量是[Ai1,…,Ain],它作为n维空间中的一个点,能唯一地表征方案di

现实案例

例如评价经济的发展水平
d1代表山东,d2代表江苏,d3代表北京……就是一共有m个待评价方案。
x1是绿化面积,x2是人均GDP,x3是经济总量……共有n个属性值。
其中能够展现山东的经济发展水平有绿化面积、人均GDP、经济总量等n个指标。而Ai1就是山东绿化的总面积、Ai2为山东GDP总量……

正负理想解

定义

正理想解C是一个方案集D中并不存在的虚拟的最佳方案,它的每个属性值都是决策矩阵中该属性的最好值;而负理想解C0则是虚拟的最差方案,它的每个属性值都是决策矩阵中该属性的最差值。在n维空间中,将方案集D中的各备选方案di与正理想解C和负理想解C0的距离进行比较,既靠近正理想解又远离负理想解的方案就是方案集D中的最佳方案;并可以据此排定方案集D中各备选方案的优先序。

实例

【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

评价表中哪五个研究生院更好,可以虚构一个最好的研究生院标准,该虚构的研究生院的数据全为最优值,例如:
虚构研究生院6,其中它的人均专著x61为1.2,生师比x62为5(生师比为学生和老师的比值,它的值必须保持适度,适当的生师比可以促进老师和学生良好的互动,该值过高过低都不好),科研经费x63为10000,预期毕业率x64为1.8。此时,研究生院6就是正理想解C*,同理构建虚拟的最差方案负理想解C0

x1 x2 x3 x4
C*(正理想解) 1.2 5 10000 1.8
C0(负理想解) 0.1 10 400 6.7

量纲

确定好正负理想解后,就可以以此来判断判断不同研究生院的优劣。下面开始描述每个研究生院与正负理想解的距离。
那么距离应该怎么算呢?当量纲不同时,方案不同数据的波动会很大,因此在计算距离时首先要排除量纲的影响,进行非量纲化。

非量纲化定义
多属性决策与评估的困难之一是属性间的不可公度性,即在属性值表中的每一列数具有不同的单位(量纲)。即使对同一属性,采用不同的计量单位,表中的数值也就不同。在用各种多属性决策方法进行分析评价时,需要排除量纲的选用对决策或评估结果的影响,这就是非量纲化。

TOPSIS法的算法步骤

1.用向量规范化的方法求得规范决策矩阵

设多属性决策问题的决策矩阵A=(aij )m*n,规范化决策矩阵B=(bij)m*n,其中
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

2.构成加权规范阵C=(cij)m*n

设由决策人给定各属性的权重向量为 w=[w1,w2,…,wn] ,
则 cij = wj*bij
其中 i=1,2,…,m, j =1,2,…,n.

在评价过程中,每项评价标准占比不同,让重要的指标影响大一点,不重要的指标影响小一点。
类似于成绩的计算,比较重要的语数英总分数高一些,其他副科的总分数低一些。

3.确定正负理想解的距离

理想解属性大致可以分为效益型、成本型和区间型三种,其中
正理想解:
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

效益最大值和成本最小值,当属性为区间型的时候要判断在哪个区间最佳。

负理想解:
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

效益最小值和成本最大值

4.计算各方案到正理想解与负理想解的距离

备选方案di到正理想解的距离为:
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

备选方案di到负理想解的距离为:
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

可类比两点间距离公式,该距离为n维空间内的距离

5.计算各方案的综合评价指数

【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

计算综合评价指数公式的分子为方案到负理想解的距离,分母为为方案到负理想解的距离与方案到正理想解的距离之和,所以综合评价指数越大越好。

6.排列方案的优劣次序

按综合评价指数由大到小排列方案的优劣次序即可

实战应用

例题

研究生院试评估
为了客观地评价我国研究生教育的实际状况和各研究生院的教学质量,国务院学位委员会办公室组织过一次研究生院的评估。为了取得经验,先选5所研究生院,收集有关数据资料进行了试评估,表1是所给出的部分数据。
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

解答步骤

数据的预处理

数据的预处理又称属性值的规范化

属性值具有多种类型,包括效益型、成本型和区间型等。这三种属性,效益型属性越大越好,成本型属性越小越好,区间型属性是在某个区间最佳。

判断每个属性的数据是越大越好还是越小越好,当属性为区间型的时候判断在哪个区间最佳。
判断完成以后将它们进行规范化处理。

数据规范化处理的作用

1.属性值有多种类型,上述三种属性放在同一个表中不便于直接从数值大小判断方案的优劣,因此需要对数据进行预处理,使得表中任一属性下性能越优的方案变换后的属性值越大。

2.非量纲化,多属性决策与评估的困难之一是属性间的不可公度性,即在属性值表中的每一列数具有不同的单位(量纲)。即使对同一属性,采用不同的计量单位,表中的数值也就不同。在用各种多属性决策方法进行分析评价时,需要排除量纲的选用对决策或评估结果的影响,这就是非量纲化。

3.归一化,属性值表中不同指标的属性值的数值人小差别很大,为了直观,更为了便于采用各种多属性决策与评估方法进行评价,需要把属性值表中的数值归一化,即把表中数值均变换到[0,1]区间上。

即将上述三种属性全部转化为效益型,这个数值分布在[0,1]区间上,该值越大越好。

属性值线性规划归一化

为了使每个属性变换后的最优值为1且最差值为0,可以进行标准0-1变换。

**1.对效益型属性xj,令
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

当aij为最小值时,bij为0,当aij为最大值时,bij为1。**

2.对成本型属性xj
计算公式可套用效益型的公式,在求正负理想解的时候记得要颠倒一下。

**3.对区间型属性xj,设给定的最优属性区间为[ a j 0 a^0_j aj0, a j ∗ a^*_j aj], a j , a^,_j aj为无
法容忍下限, a j ” a^”_j aj为无法容忍上限,则
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

例如例题中的生师比,它最好的区间应为[5,6],最差应不低于2,高于12,当该属性值在最有区间时为1,当超过或等于能容忍上下限时为0。**

MATLAB代码(建议对照上方 “TOPSIS法的算法步骤” 查看)

注:以下并非C语言

clc,clear 
% clc:清除命令窗口的内容,对工作环境中的全部变量无任何影响
% clear:清除工作空间的所有变量

a=[0.1 5 5000 4.7
    0.2 6 6000 5.6
    0.4 7 7000 6.7
    0.9 10 10000 2.3
    1.2 2  400   1.8];
% 输入数据

[m,n]=size(a);
%这行代码的作用是获取矩阵a的维度信息,其中m表示a的行数,n表示a的列数。其中,size函数返回的是一个含有两个元素的向量,第一个元素表示矩阵的行数,第二个元素表示矩阵的列数。因此,在这个代码中,m和n就被赋值为了矩阵a的行数和列数。在后续的代码中,可以使用这两个变量来控制循环等操作。

% @是用于定义函数句柄的操作符。函数句柄既是一种变量,可以用于传参和赋值;也是可以当做函数名一样使用,该步骤类似于C语言中的构造函数。
x2=@(qujian,lb,ub,x)(1-(qujian(1)-x)./(qujian(1)-lb)).*(x>=lb&x<qujian(1))+...
    (x>=qujian(1)&x<=qujian(2))+(1-(x-qujian(2))./(ub-qujian(2))).*...
    (x>qujian(2)&x<=ub);
qujian=[5,6];lb=2;ub=12;
a(:,2)=x2(qujian,lb,ub,a(:,2));
%该函数可以实现将区间型属性转换为效益型属性的,实现下图所示公式

【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

注:如果 (x>=qujian(1)&x<=qujian(2)) 成立,结果为真,值为1;如果 x 的值没有出现在上述区间,结果为假,值为0。

加权处理

for j=1:n
    b(:,j)=a(:,j)/norm(a(:,j));%向量规范化
end

实现该式:
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

%设权向量为w=[0.2,0.3,0.4,0.1]
w=[0.2 0.3 0.4 0.1];
c=b.*repmat(w,m,1);%求出加权规范阵

至此步骤2完成,得出加权的向量规范化属性矩阵
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

正负理想解

cstar=max(c);%求正理想解
cstar(4)=min(c(:,4))%属性4为成本型,与效益型相反
c0=min(c);%求负理想解
c0(4)=max(c(:,4))%属性4为成本型,与效益型相反

for i=1:m
    sstar(i)=norm(c(i,:)-cstar);%求到正理想解的距离
    s0(i)=norm(c(i,:)-c0);%求到负理想解的距离
end

按顺序依次实现
求到正理想解的距离:
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

求到负理想解的距离:
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

f=s0./(sstar+s0);
[sf,ind]=sort(f,'descend')  %求排序结果
% "ascend",进行升序排序,"descend ",进行降序排序

计算各方案的综合评价指数:
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

得出结果
各方案的从优到劣的次序为4,3,2,1,5文章来源地址https://www.toymoban.com/news/detail-478735.html

完整代码

clc,clear 
% clc:清除命令窗口的内容,对工作环境中的全部变量无任何影响
% clear:清除工作空间的所有变量

a=[0.1 5 5000 4.7
    0.2 6 6000 5.6
    0.4 7 7000 6.7
    0.9 10 10000 2.3
    1.2 2  400   1.8];
% 输入数据
[m,n]=size(a);
x2=@(qujian,lb,ub,x)(1-(qujian(1)-x)./(qujian(1)-lb)).*(x>=lb&x<qujian(1))+...
    (x>=qujian(1)&x<=qujian(2))+(1-(x-qujian(2))./(ub-qujian(2))).*...
    (x>qujian(2)&x<=ub);
qujian=[5,6];lb=2;ub=12;
a(:,2)=x2(qujian,lb,ub,a(:,2));%对属性2进行变换

for j=1:n
    b(:,j)=a(:,j)/norm(a(:,j));%向量规范化
end
w=[0.2 0.3 0.4 0.1];
c=b.*repmat(w,m,1);%求加权矩阵

cstar=max(c);%求正理想解
cstar(4)=min(c(:,4))%属性4为成本型
c0=min(c);%求负理想解
c0(4)=max(c(:,4))%属性4为成本型的

for i=1:m
    sstar(i)=norm(c(i,:)-cstar);%求到正理想解的距离
    s0(i)=norm(c(i,:)-c0);%求到负理想解的距离
end
f=s0./(sstar+s0);
[sf,ind]=sort(f,'descend')  %求排序结果
% "ascend",进行升序排序,"descend ",进行降序排序
负理想解
c0(4)=max(c(:,4))%属性4为成本型的

for i=1:m
    sstar(i)=norm(c(i,:)-cstar);%求到正理想解的距离
    s0(i)=norm(c(i,:)-c0);%求到负理想解的距离
end
f=s0./(sstar+s0);
[sf,ind]=sort(f,'descend')  %求排序结果
% "ascend",进行升序排序,"descend ",进行降序排序

到了这里,关于【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 数学建模:TOPSIS分析

    🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 假设有m个评价对象,n个评价指标,首先需要进行指标的 正向化 : 极大型 极小型 单点型 区间型 然后对正向化后的矩阵进行 标准化 ,得到 Z Z Z 矩阵:假设 X X X 为正向化后的矩阵,则 Z Z Z 是标准化后的矩阵: X = [ x 11 x 11

    2024年02月11日
    浏览(6)
  • 数学建模之“TOPSIS数学模型”原理和代码详解

    数学建模之“TOPSIS数学模型”原理和代码详解

    TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)是一种多准则决策分析方法, 用于解决多个候选方案之间的排序和选择问题 。它基于一种数学模型, 通过比较每个候选方案与理想解和负理想解之间的相似性来评估其优劣。 TOPSIS方法包括以下步骤: 确定决策准则:

    2024年02月12日
    浏览(12)
  • 数学建模学习笔记||TOPSIS&&熵权法

    数学建模学习笔记||TOPSIS&&熵权法

    目录 评价类问题介绍 TOPSIS法 算法步骤 1.统一指标类型(指标正向化) 2.标准化处理 3.确定正理想解和负理想解 4.计算距离 5.计算相对接近度(S越大越接近理想解) 熵权法 概念 过程 python代码实现 作用         声明 评价类问题介绍 目的:得知一组方案的好坏,对数据评

    2024年01月16日
    浏览(7)
  • 《零基础数学建模》——TOPSIS+熵权法

    本文大部分是对于数学建模清风老师的课程学习总结归纳而来,我的理解可能有错误,大家发现错误可以在评论区批评指正,课程地址:《数学建模清风》   TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution)可翻译为逼近理想解排序法,国内常简称为优劣解距离法

    2023年04月09日
    浏览(8)
  • 数学建模.优劣解距离法Topsis

    数学建模.优劣解距离法Topsis

    1.引言 Topsis也是一种分析类的方法,得到最优结果。 层次分析法:有我了还要你干嘛? 哈哈,这里简单说一下,Topsis与层次分析法的区别: 在处理多个决策层的时候,层次分析法会不准确,显得力不从心,那么这个时候用Topsis会更好一些,简单可以理解为Topsis是层次分析法

    2024年02月05日
    浏览(9)
  • 【不带权重的TOPSIS模型详解】——数学建模

    【不带权重的TOPSIS模型详解】——数学建模

    部分资料取自于b站:数学建模学习交流清风老师 TOPSIS法可翻译为 逼近理想解排序法 ,国内常简称为 优劣解距离法 它是一种常用的综合评价方法,其能充分利用原始数据的信息,其结果能精确地反映各评价方案之间地差异。 举个例子: 数学成绩越高代表学习能力越强。跑

    2024年02月12日
    浏览(12)
  • 数学建模之TOPSIS模型(含matlab代码)

    数学建模之TOPSIS模型(含matlab代码)

      目录 一、方法和原理 1、理想解法  2、方法原理  二、TOPSIS法的具体算法 (1) 用向量规划化的方法求得规范决策矩阵 1、线性变换 2、0-1变换 3、区间型属性的变换 4、向量规范化 5、标准换处理  (2)构成加权规范阵C  (3)确定正理想解和负理想解  (4)计算各方案到正

    2024年02月07日
    浏览(8)
  • 数学建模--Topsis评价方法的Python实现

    数学建模--Topsis评价方法的Python实现

    目录 1.算法流程简介 2.算法核心代码 3.算法效果展示  

    2024年02月09日
    浏览(11)
  • 优劣解距离法(TOPSIS)——数学建模清风笔记

    优劣解距离法(TOPSIS)——数学建模清风笔记

    构造计算评分的公式:    max,min指已知数据中的最大值和最小值而不是理论上的最大值和最小值 三点解释: (1)比较的对象一般要远大于两个。(例如比较一个班级的成绩) (2)比较的指标也往往不只是一个方面的,例如成绩、工时数、课外竞赛得分等。 (3)有很多指

    2024年01月17日
    浏览(9)
  • 数学建模——遗传算法步骤及程序详解

    数学建模——遗传算法步骤及程序详解

    遗传算法是一种基于生物染色体遗传时发生交叉、变异的原理,是一种通过模拟自然进化过程,对解集进行优化更新的算法,属于优化算法的一种。   遗传算法是基于生物染色体遗传时发生的原理,那么就要先了解一下生物学关于遗传的基本原理。假设种群为P(t),下一代种

    2024年02月06日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包