初探图神经网络——GNN

这篇具有很好参考价值的文章主要介绍了初探图神经网络——GNN。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


title: 图神经网络(GNN)
date:
tags:

  • 随笔
  • 知识点
    categories:
  • [学习笔记]

初探图神经网络(GNN)

文章来源:https://distill.pub/2021/gnn-intro/

前言:说一下为什么要写这篇文章,因为自己最近一直听说“图神经网络”,但是一直不了解这是什么,因此这次有机会对图神经网络有一个简单的认识了解好了,开始步入正题。

整片文章并没有对内容进行章节部分的划分,只是从头到尾进行了讲解,因此这里就根据原文的顺序依次做笔记的填写了。

文章首先说了这样的一句话We are starting to see.....。这句话的提出就说明了现在的图神经网络还是正在兴起的阶段,因此还是有一定的发展前景的——既是挑战也是机遇。

作者从以下四个方面来说明和解释什么是图神经网络(也是本文的主要讲述的点):

  1. 什么样子的数据可以表示成为图;
  2. 图跟其他的数据有什么不一样的地方;
  3. 构建一个GNN;
  4. 提供一个GNN playground

什么是图

图表示实体节点之间的关系,如下图所示:

初探图神经网络——GNN

其中U表示的是整张图。

为了进一步说明什么是节点、关系和整张图,我们可以用下面的方式来表示出什么是图(用向量的方式来表示出):

初探图神经网络——GNN

另外,图可以表示为无向图和有向图两种图:

初探图神经网络——GNN

数据表示成图

那么其他的数据是怎么可以表示成图的呢?

Imgae as graphs

我们将图片数据的像素点看成是一个节点,这样的话就可以构造出一个图:

初探图神经网络——GNN

Text as graphs

用图来表示一段文本的话,那就是一个有向图来表示了,那么一段话中,每一个字符、单词、token等都可以作为图的节点:

初探图神经网络——GNN

当然,文章也说明了,目前来说的图片和文本用图的形式来表示的话,并非是两者常用的编码方法,因为用图的形式来表示的话,会产生冗余的表示形式。

其他形式的数据表示

  • 分子图的表示:

    初探图神经网络——GNN

  • 社交网络的表示:

初探图神经网络——GNN

  • 比赛关系的表示(简单说一下这个例子:就是在跆拳道比赛中,每个人与其他人比赛之间的关系——是否进行比赛,可以用图的形式来表示):

初探图神经网络——GNN

解决的问题方向或应用

那么图可以解决什么问题呢,可以从以下三个方面来考虑:

  • 图层面(graph-level)
  • 节点层面(node-level)
  • 边层面(edge-level)

首先是图层面的任务,文章中说到了一个任务就是查看或者说检查一个分子图中是否存在两个环:

初探图神经网络——GNN

这类问题在图像中与分类问题很像,在文本中与情感分析的任务很想。


节点层面的任务,文中所举的例子是跆拳道的比赛问题——假设在比赛过程中指导员Mr. Hi和管理员John H产生了分歧,节点表示参与竞赛的人员,边表示关系,那么任务就是——正确分类参与人员是Mr. Hi一方的人还是John H一方的人:

初探图神经网络——GNN

那么在图像中,就类似是图像的分割任务,每一个节点代表是一个像素;

在文本中,就类似预测句子中的单词的词性——词性标注;


那么边层面上考虑,文中提出了这样一个场景——假设在一场比赛中,人物都用节点来表示,那么边就用来表示节点之间的关系:

初探图神经网络——GNN

也就是说,任务转为预测节点之间的关系,那么就很像是知识图谱中的关系抽取一样的作用:

初探图神经网络——GNN

在机器学习中存在的问题

文章主要是针对在神经网络中存在的问题做了论述,即将神经网络用到图上该怎么表示图。

到目前,我们知道图有四种属性是需要我们来考虑的:

  • 节点;
  • 边;
  • 全图属性信息;
  • 连接性

前三个还可以表示——用向量来表示,最难来表示的就是最后一个——图的连接性,即如何来表示两个节点的连通性呢?

有人说可以用邻接矩阵来实现连通性的存储表示,但是这样会存在一些问题:

  1. 数据量很大的前提下 ,图是存储不了的;

  2. 如果用稀疏矩阵来表示地话,在GPU上计算是不能实现并行计算的(这也是目前来说待解决的问题);

  3. 邻接矩阵还有一个特点就是——一个图的信息可以用不同的邻接矩阵来表示,那么针对不同的数据的输入,神经网络该如何处理呢?也就是如何处理数据来实现无顺序性的表示。

    初探图神经网络——GNN

文中提出了下面这样的表示方法:

初探图神经网络——GNN

  • 对于图中的节点,用一个标量来表示(将图中的节点进行编号),类似One-hot的表示方法;
  • 对于图中的边,也用一个标量来表示,同样地还是用类似One-hot的方法来表示;
  • 这里的连接性用邻接列表来表示,列表的长度代表来边的个数,列表中的元素是一个二元组,分别表示的是边的两边联通的是哪两个节点;

图神经网络是什么?

文中先是给出了一个GNN的概念:

A GNN is an optimizable transformation on all attributes of the graph (nodes, edges, global-context) that preserves graph symmetries (permutation invariances).

翻译过来就是,图神经网络是一个能够在图的属性上进行转换,且能够保持图上的对称信息的。

对称信息的意思就是,将节点的位置进行重新打乱排序之后,图的结构还是不变的。

文中说使用了message passing neural network框架来进行构建GNN,当然还有其他的网络来进行表示。在该网络中,输入的是一个图网络,输出的还是一个图网络。

The simplest GNN

我们来构造一个最简单的GNN的例子,如下图所示,对于顶点向量(也就是我们前面提到的节点向量),边向量和全局向量,我们分别构造一个多层感知机。

初探图神经网络——GNN

这样三个MLP就构成了一个GNN的层。

这个层的作用就是根据输入的顶点向量、边向量和全局向量,对应地输入到MLP中,然后输入对应的图,其中只是图的属性做出了改变,但是联通性或者说结构没有发生改变。

如何预测

那么接下来就考虑,如何去预测了?

  • 简单情况

先考虑最简单的二分类问题,对于顶点我们已经有了全部的顶点向量信息,通过这些顶点向量信息我们可以在其后面追加一个输出大小为2的全连接层,最后再用一个softmax做一个分类即可;

同样地,对于一个多分类问题,也是只需要在输出后面添加一个输出大小为n的全连接层,最后添加一个softmax作为预测即可。

对于线性回归问题,只需要一个输出大小为1的连接层即可。

下图的意思就是,给定最后一层的输出(是一个图),然后将顶点输入到全连接层中,最后得到预测的输出。

需要注意的是,所有的节点都共享同一个全连接层的参数;同理,所有的边也是共享同一个全连接层的参数。

初探图神经网络——GNN

  • 复杂情况

如果没有顶点信息,但是仍然需要做顶点的情况预测,那么该怎么处理呢?

文中提到了一种方法就是——Pooling,该方法分两步:

  1. 对于需要被pool的元素(这里的元素是指与没有顶点信息相邻的边),收集它们向量表示;
  2. 对于收集到的全部向量做加法求和,得到一个新的向量,此时这个向量就是我们要求得的顶点向量;
  3. (其中还需要添加一个全局向量,但是文中并未提及,但是会在全局信息的共享中说明这个东西是什么)

用公式的方法来表示的话,就是用下图来表示:

上图中是说没有点,只有边的情况,那么对于只有点信息没有边的情况,那么可以用下面的方法来表示:

因此,针对于上述的方法,我们可以看出,不管缺少哪种数据,我们都可以根据pool的方法来获得缺少的数据。

那么总结一个简单的GNN,就用下图来表示,先是输入一个图,然后通过MLP,得到最后的输出,如果缺少了数据,可以用pooling层来处理,然后再经过分类层得到最后的预测结果。

初探图神经网络——GNN

信息传递

上述的方法有一个很大的局限性就是不能够利用图的结构信息来预测,可以看出上述的方法只是分别独立地对于点,边,全局信息作属性的修改,没有利用连接关系,那信息传递就可以很好地来解决这个问题。

其实消息传递的过程跟pooling的过程很是相似,过程可以用下图来表示(用相邻的节点信息来加和):

用公式化的形式表示如下:

前面讲到的pooling都是在最后的输出层之后做的,那么是否可以根据这个方法来提前对属性进行补全呢?

答案是可以的。

下面是根据这个方法,可以将图中的信息进行共享分布,本质上还是向量的相加(都是相邻的才能相加,换句话说就是只有是相邻与点V相连的边才能加到把点V的向量加到边上,同理边加到点上的道理也一样。)

但是呢,究竟是先从点集加到边集好,还是先从边集加到点集好(两种方法会产生不一样的结果),尚未有定论。另外文中还给出了其他的方法,比如交替汇聚pool,这里就不做论述了。

全局信息的共享

到目前为止,我们所讨论的情况是存在这样的一个问题:无法共享不直接相邻点或边的信息。

这就是我们为什么要引入全局变量这个信息或概念的原因。

文中提出的说到方法就是引入一个图U——被称作master nodecontext vector.这个U,连接了图中所有的边和点,因此可以作为信息传递的桥梁,具体来说可以用下图来表示:

初探图神经网络——GNN

搭建一个GNN

这一部分就是在文中有一个交互图了,体现了GNN对超参数的调整是很敏感的,虽然也不清楚图表示的是什么意思,在这里就不做阐述了。

文章后面还做了大量的讨论,有时间再补上吧。文章来源地址https://www.toymoban.com/news/detail-479886.html

到了这里,关于初探图神经网络——GNN的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习 GNN图神经网络(四)线性回归之ESOL数据集水溶性预测

    本文旨在使用化合物分子的SMILES字符串进行数据模型训练,对其水溶性的值进行预测。 之前的文章《深度学习 GNN图神经网络(三)模型思想及文献分类案例实战》引用的Cora数据集只有一张图,属于图神经网络的节点分类问题。本文介绍的是多图批量训练的线性回归问题,在

    2024年02月02日
    浏览(47)
  • A.图机器学习(GML)&图神经网络(GNN)原理和代码实现(前置学习系列二)

    图学习图神经网络算法专栏简介:主要实现图游走模型(DeepWalk、node2vec);图神经网络算法(GCN、GAT、GraphSage),部分进阶 GNN 模型(UniMP标签传播、ERNIESage)模型算法等,完成项目实战 专栏链接 :图学习图神经网络算法专栏简介:含图算法(图游走模型、图神经网络算法等)原

    2024年02月01日
    浏览(41)
  • 【深度学习随笔】神经网络中去掉残差连接的工作

    刚刚有个同学问我:“深层神经网络如果去掉一部分残差,到底还能不能正常训练呀?”这个问题着实很好,我也没思考过,也没尝试过,然后试着去Google Scholar检索了一下“without shorcut”,于是看到了以下的文章。让我比较惊奇的是,这是个很多人研究的方向,并且

    2024年02月15日
    浏览(50)
  • YOLOv5基础知识点——卷积神经网络

    一文看懂卷积神经网络-CNN(基本原理+独特价值+实际应用)- 产品经理的人工智能学习库 (easyai.tech) 人类的视觉原理如下 :从原始信号摄入开始(瞳孔摄入像素 Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形

    2024年02月05日
    浏览(52)
  • AIGC必备知识点:你不可不知的CNN(卷积神经网络)-知识全解析!

    Look!👀我们的大模型商业化落地产品 📖更多AI资讯请👉🏾关注 Free三天集训营助教在线为您火热答疑👩🏼‍🏫 大家在谈论的卷积神经网络究竟是什么?(Convolutional Neural Network,CNN)是一类主要用于计算机视觉领域的深度学习算法,它被广泛地运用于包括图像和视频识别、

    2024年01月17日
    浏览(41)
  • 【环境搭建】MacOS系统M1芯片从零开始安装torch torch-geometric(PyG) torch-sparse torch-scatter步骤详解、配置图神经网络(GNN)训练环境教程

    前言:实际上只装PyTorch或者torch不会遇到什么问题,但是torch-geometric、torch-scatter、torch-sparse在M1 chip的Mac上非常难安装( PyG DocumentationInstallation 里注明了“Conda packages are currently not available for M1/M2/M3 macs”)。博主试错过程中遇到了很多无解的bug,还把conda搞炸了,最终不得不

    2024年02月02日
    浏览(45)
  • 神经网络基础-神经网络补充概念-30-搭建神经网络块

    搭建神经网络块是一种常见的做法,它可以帮助你更好地组织和复用网络结构。神经网络块可以是一些相对独立的模块,例如卷积块、全连接块等,用于构建更复杂的网络架构。

    2024年02月12日
    浏览(49)
  • 神经网络基础-神经网络补充概念-17-计算神经网络的输出

    计算神经网络的输出通常涉及前向传播(Forward Propagation)的过程,其中输入数据通过网络的层级结构,逐步被传递并变换,最终生成预测结果。下面我将为你展示一个简单的神经网络前向传播的示例。 假设我们有一个具有以下参数的简单神经网络: 输入层:2个神经元 隐藏

    2024年02月12日
    浏览(42)
  • 神经网络实验--卷积神经网络

    本实验主要为了掌握深度学习的基本原理;能够使用TensorFlow实现卷积神经网络,完成图像识别任务。 文章目录 1. 实验目的 2. 实验内容 3. 实验过程 题目一: 题目二: 实验小结讨论题 ①掌握深度学习的基本原理; ②能够使用TensorFlow实现卷积神经网络,完成图像识别任务。

    2024年02月06日
    浏览(55)
  • 神经网络与卷积神经网络

    全连接神经网络是一种深度学习模型,也被称为多层感知机(MLP)。它由多个神经元组成的层级结构,每个神经元都与前一层的所有神经元相连,它们之间的连接权重是可训练的。每个神经元都计算输入的加权和,并通过一个非线性激活函数进行转换,然后将结果传递到下一

    2024年02月10日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包