【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络

这篇具有很好参考价值的文章主要介绍了【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0 简介

🔥 Hi,大家好,这里是丹成学长的毕设系列文章!

🔥 对毕设有任何疑问都可以问学长哦!

这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定要提前准备,避免到后面措手不及,草草了事。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的新项目是

🚩 深度学习卷积神经网络图像分类

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 选题指导, 项目分享:

https://gitee.com/yaa-dc/BJH/blob/master/gg/cc/README.md

1 常用的分类网络介绍

1.1 CNN

传统CNN包含卷积层、全连接层等组件,并采用softmax多类别分类器和多类交叉熵损失函数。如下图:

【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络

  • 卷积层(convolution layer): 执行卷积操作提取底层到高层的特征,发掘出图片局部关联性质和空间不变性质。

  • 池化层(pooling layer): 执行降采样操作。通过取卷积输出特征图中局部区块的最大值(max-pooling)或者均值(avg-pooling)。降采样也是图像处理中常见的一种操作,可以过滤掉一些不重要的高频信息。

  • 全连接层(fully-connected layer,或者fc layer): 输入层到隐藏层的神经元是全部连接的。

  • 非线性变化: 卷积层、全连接层后面一般都会接非线性变化层,例如Sigmoid、Tanh、ReLu等来增强网络的表达能力,在CNN里最常使用的为ReLu激活函数。

  • Dropout : 在模型训练阶段随机让一些隐层节点权重不工作,提高网络的泛化能力,一定程度上防止过拟合

在CNN的训练过程总,由于每一层的参数都是不断更新的,会导致下一次输入分布发生变化,这样就需要在训练过程中花费时间去设计参数。在后续提出的BN算法中,由于每一层都做了归一化处理,使得每一层的分布相对稳定,而且实验证明该算法加速了模型的收敛过程,所以被广泛应用到较深的模型中。

1.2 VGG

VGG 模型是由牛津大学提出的(19层网络),该模型的特点是加宽加深了网络结构,核心是五组卷积操作,每两组之间做Max-Pooling空间降维。同一组内采用多次连续的3X3卷积,卷积核的数目由较浅组的64增多到最深组的512,同一组内的卷积核数目是一样的。卷积之后接两层全连接层,之后是分类层。该模型由于每组内卷积层的不同主要分为 11、13、16、19 这几种模型

【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络

增加网络深度和宽度,也就意味着巨量的参数,而巨量参数容易产生过拟合,也会大大增加计算量。

1.3 GoogleNet

GoogleNet模型由多组Inception模块组成,模型设计借鉴了NIN的一些思想.

NIN模型特点:

    1. 引入了多层感知卷积网络(Multi-Layer Perceptron Convolution, MLPconv)代替一层线性卷积网络。MLPconv是一个微小的多层卷积网络,即在线性卷积后面增加若干层1x1的卷积,这样可以提取出高度非线性特征。
  • 2)设计最后一层卷积层包含类别维度大小的特征图,然后采用全局均值池化(Avg-Pooling)替代全连接层,得到类别维度大小的向量,再进行分类。这种替代全连接层的方式有利于减少参数。

Inception 结构的主要思路是怎样用密集成分来近似最优的局部稀疏结构。

【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络

2 图像分类部分代码实现

2.1 环境依赖

python 3.7
jupyter-notebook : 6.0.3
cudatoolkit 10.0.130
cudnn 7.6.5
tensorflow-gpu 2.0.0
scikit-learn 0.22.1
numpy
cv2
matplotlib

2.2 需要导入的包

  import os
  import cv2
  import numpy as np
  import pandas as pd
  import tensorflow as tf
  from tensorflow import keras
  from tensorflow.keras import layers,models
  from tensorflow.keras.models import Sequential
  from tensorflow.keras.optimizers import Adam
  from tensorflow.keras.callbacks import Callback
  from tensorflow.keras.utils import to_categorical
  from tensorflow.keras.applications import VGG19
  from tensorflow.keras.models import load_model
  import matplotlib.pyplot as plt
  from sklearn.preprocessing import label_binarize
  tf.compat.v1.disable_eager_execution()
  os.environ['CUDA_VISIBLE_DEVICES'] = '0' #使用GPU

2.3 参数设置(路径,图像尺寸,数据集分割比例)

 preprocessedFolder = '.\\ClassificationData\\' #预处理文件夹
 outModelFileName=".\\outModelFileName\\" 
 ImageWidth = 512
 ImageHeight = 320
 ImageNumChannels = 3
 TrainingPercent = 70  #训练集比例
 ValidationPercent = 15 #验证集比例

2.4 从preprocessedFolder读取图片并返回numpy格式(便于在神经网络中训练)

def read_dl_classifier_data_set(preprocessedFolder):
  num = 0  # 图片的总数量
  cnt_class = 0  #图片所属的类别
  label_list = []  # 存放每个图像的label,图像的类别
  img_list = []   #存放图片数据
  for directory in os.listdir(preprocessedFolder):
      tmp_dir = preprocessedFolder + directory
      cnt_class += 1
      for image in os.listdir(tmp_dir):
          num += 1
          tmp_img_filepath = tmp_dir + '\\' + image
          im = cv2.imread(tmp_img_filepath)  # numpy.ndarray
          im = cv2.resize(im, (ImageWidth, ImageHeight))  # 重新设置图片的大小
          img_list.append(im)
          label_list.append(cnt_class)  # 在标签中添加类别
          print("Picture " + str(num) + "Load "+tmp_img_filepath+"successfully")
print("共有" + str(num) + "张图片")
print("all"+str(num)+"picturs belong to "+str(cnt_class)+"classes")
return np.array(img_list),np.array(label_list)

all_data,all_label=read_dl_classifier_data_set(preprocessedFolder)

【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络

2.5 数据预处理

图像数据压缩, 标签数据进行独立热编码one-hot

def preprocess_dl_Image(all_data,all_label):
      all_data = all_data.astype("float32")/255  #把图像灰度值压缩到0--1.0便于神经网络训练
      all_label = to_categorical(all_label)  #对标签数据进行独立热编码
      return all_data,all_label

all_data,all_label = preprocess_dl_Image(all_data,all_label) #处理后的数据

对数据及进行划分(训练集:验证集:测试集 = 0.7:0.15:0.15)

def split_dl_classifier_data_set(all_data,all_label,TrainingPercent,ValidationPercent):
      s = np.arange(all_data.shape[0])
      np.random.shuffle(s)  #随机打乱顺序
      all_data = all_data[s] #打乱后的图像数据
      all_label = all_label[s] #打乱后的标签数据
      all_len = all_data.shape[0]
      train_len = int(all_len*TrainingPercent/100)  #训练集长度
      valadation_len = int(all_len*ValidationPercent/100)#验证集长度
      temp_len=train_len+valadation_len
      train_data,train_label = all_data[0:train_len,:,:,:],all_label[0:train_len,:] #训练集
      valadation_data,valadation_label = all_data[train_len:temp_len, : , : , : ],all_label[train_len:temp_len, : ] #验证集
      test_data,test_label = all_data[temp_len:, : , : , : ],all_label[temp_len:, : ] #测试集
      return train_data,train_label,valadation_data,valadation_label,test_data,test_label

train_data,train_label,valadation_data,valadation_label,test_data,test_label=split_dl_classifier_data_set(all_data,all_label,TrainingPercent,ValidationPercent)

2.6 训练分类模型

  • 使用迁移学习(基于VGG19)
  • epochs = 30
  • batch_size = 16
  • 使用 keras.callbacks.EarlyStopping 提前结束训练
def train_classifier(train_data,train_label,valadation_data,valadation_label,lr=1e-4):
      conv_base = VGG19(weights='imagenet',
              include_top=False,
              input_shape=(ImageHeight, ImageWidth, 3) )  
      model = models.Sequential()
      model.add(conv_base)
      model.add(layers.Flatten())
      model.add(layers.Dense(30, activation='relu')) 
      model.add(layers.Dense(6, activation='softmax')) #Dense: 全连接层。activation: 激励函数,‘linear’一般用在回归任务的输出层,而‘softmax’一般用在分类任务的输出层
      conv_base.trainable=False
      model.compile(
      loss='categorical_crossentropy',#loss: 拟合损失方法,这里用到了多分类损失函数交叉熵  
      optimizer=Adam(lr=lr),#optimizer: 优化器,梯度下降的优化方法 #rmsprop
      metrics=['accuracy'])
      model.summary() #每个层中的输出形状和参数。
      early_stoping =tf.keras.callbacks.EarlyStopping(monitor="val_loss",min_delta=0,patience=5,verbose=0,baseline=None,restore_best_weights=True)
      history = model.fit(
      train_data, train_label,
      batch_size=16, #更新梯度的批数据的大小 iteration = epochs / batch_size,
      epochs=30,  # 迭代次数
      validation_data=(valadation_data, valadation_label),  # 验证集
      callbacks=[early_stoping])
      return model,history
model,history = train_classifier(train_data,train_label,valadation_data,valadation_label,)

【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络

2.7 模型训练效果

def plot_history(history):
      history_df = pd.DataFrame(history.history)
      history_df[['loss', 'val_loss']].plot()
      plt.title('Train and valadation loss')
      history_df = pd.DataFrame(history.history)
      history_df[['accuracy', 'val_accuracy']].plot()
      plt.title('Train and valadation accuracy')

plot_history(history)

【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络

2.8 模型性能评估

  • 使用测试集进行评估
  • 输出分类报告和混淆矩阵
  • 绘制ROC和AUC曲线
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
import seaborn as sns
Y_pred_tta=model.predict_classes(test_data) #模型对测试集数据进行预测
Y_test = [np.argmax(one_hot)for one_hot in test_label]# 由one-hot转换为普通np数组
Y_pred_tta=model.predict_classes(test_data) #模型对测试集进行预测
Y_test = [np.argmax(one_hot)for one_hot in test_label]# 由one-hot转换为普通np数组
print('验证集分类报告:\n',classification_report(Y_test,Y_pred_tta))
confusion_mc = confusion_matrix(Y_test,Y_pred_tta)#混淆矩阵
df_cm = pd.DataFrame(confusion_mc)
plt.figure(figsize = (10,7))
sns.heatmap(df_cm, annot=True, cmap="BuPu",linewidths=1.0,fmt="d")
plt.title('PipeLine accuracy:{0:.3f}'.format(accuracy_score(Y_test,Y_pred_tta)),fontsize=20)
plt.ylabel('True label',fontsize=20)
plt.xlabel('Predicted label',fontsize=20)

【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络

【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score
from sklearn.metrics import roc_curve
from sklearn import metrics
import matplotlib as mpl

# 计算属于各个类别的概率,返回值的shape = [n_samples, n_classes]
y_score = model.predict_proba(test_data)
# 1、调用函数计算验证集的AUC 
print ('调用函数auc:', metrics.roc_auc_score(test_label, y_score, average='micro'))
# 2、手动计算验证集的AUC
#首先将矩阵test_label和y_score展开,然后计算假正例率FPR和真正例率TPR
fpr, tpr, thresholds = metrics.roc_curve(test_label.ravel(),y_score.ravel())
auc = metrics.auc(fpr, tpr)
print('手动计算auc:', auc)
mpl.rcParams['font.sans-serif'] = u'SimHei'
mpl.rcParams['axes.unicode_minus'] = False
#FPR就是横坐标,TPR就是纵坐标
plt.figure(figsize = (10,7))
plt.plot(fpr, tpr, c = 'r', lw = 2, alpha = 0.7, label = u'AUC=%.3f' % auc)
plt.plot((0, 1), (0, 1), c = '#808080', lw = 1, ls = '--', alpha = 0.7)
plt.xlim((-0.01, 1.02))
plt.ylim((-0.01, 1.02))
plt.xticks(np.arange(0, 1.1, 0.1))
plt.yticks(np.arange(0, 1.1, 0.1))
plt.xlabel('False Positive Rate', fontsize=16)
plt.ylabel('True Positive Rate', fontsize=16)
plt.grid(b=True, ls=':')
plt.legend(loc='lower right', fancybox=True, framealpha=0.8, fontsize=12)
plt.title('37个验证集分类后的ROC和AUC', fontsize=18)
plt.show()

【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络

3 1000种图像分类

这是学长训练的能识别1000种类目标的图像分类模型,演示效果如下

【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络

【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络

【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络文章来源地址https://www.toymoban.com/news/detail-479898.html

4 最后

到了这里,关于【毕业设计】深度学习图像分类算法研究与实现 - python OpenCV 卷积神经网络的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 毕业设计 基于深度学习的图像修复算法 DCGAN

    今天学长向大家分享一个毕业设计项目 基于深度学习的图像修复算法 DCGAN 项目获取: https://gitee.com/sinonfin/algorithm-sharing 图像修复是指利用复杂的算法重建图形中丢失或损坏的部分的过程。在现实生活中,这项工作仍然由经验丰富的图像修复师来完成。图像修复技术主要用来

    2024年01月21日
    浏览(73)
  • 毕业设计:基于深度学习的图像去噪算法 人工智能

    目录 前言 项目背景 设计思路 数据集 模型训练 更多帮助     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学

    2024年02月19日
    浏览(47)
  • 计算机毕业设计--基于深度学习技术(Transformer、GAN)的破损图像修复算法(含有Github代码)

    本篇文章是针对破损照片的修复。如果你想对老照片做一些色彩增强,清晰化,划痕修复,划痕检测,请参考我的另一篇CSDN作品 老照片(灰白照片)划痕修复+清晰化+色彩增强的深度学学习算法设计与实现 Abstract 在图像获取和传输过程中,往往 伴随着各种形式的损坏 ,降低

    2024年04月23日
    浏览(72)
  • 毕业设计-基于深度学习的垃圾分类系统

    目录 前言 课题背景和意义 实现技术思路 一、深度学习理论及技术基础 二、基于特征融合和注意力机制的垃圾检测算法 三、多目标垃圾视频追踪算法 实现效果图样例 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边

    2024年02月04日
    浏览(48)
  • 毕业设计-基于深度学习的花卉识别分类

    目录 前言 课题背景和意义 实现技术思路 一、花卉识别相关理论基础  二、基于 ResNeXt 和迁移学习的花卉种类识别 三、基于 EfficientNet 和迁移学习的花卉种类识别 实现效果图样例 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学

    2024年02月09日
    浏览(56)
  • 毕业设计-基于深度学习的垃圾分类识别方法

    目录 前言 课题背景和意义 实现技术思路 一、目标检测算法对比研究 二、垃圾数据集的制作 实现效果图样例 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设

    2024年02月06日
    浏览(85)
  • 【毕业设计】深度学习垃圾分类系统 - python 卷积神经网络

    🔥 Hi,大家好,这里是丹成学长的毕设系列文章! 🔥 对毕设有任何疑问都可以问学长哦! 这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定

    2023年04月08日
    浏览(43)
  • 毕业设计-基于深度学习的图像文字识别系统

    目录 前言 课题背景和意义 实现技术思路 一、基本原理 二、基于深度学习的图像文字识别技术 三、总结 实现效果图样例 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校

    2024年02月05日
    浏览(56)
  • 毕业设计-基于深度学习的图像去噪方法研究

    目录 前言 课题背景和意义 实现技术思路 实现效果图样例     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学

    2023年04月18日
    浏览(50)
  • 【毕业设计】深度学习卫星遥感图像检测与识别系统(目标检测)

    🔥 Hi,大家好,这里是丹成学长的毕设系列文章! 🔥 对毕设有任何疑问都可以问学长哦! 这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定

    2024年02月08日
    浏览(65)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包