【大数据基础】基于 TMDB 数据集的电影数据分析

这篇具有很好参考价值的文章主要介绍了【大数据基础】基于 TMDB 数据集的电影数据分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

https://dblab.xmu.edu.cn/blog/2400/

实验内容

环境搭建

pip3 install bottle

【大数据基础】基于 TMDB 数据集的电影数据分析

数据预处理

本次项目使用的数据集来自知名数据网站 Kaggle 的 tmdb-movie-metadata 电影数据集,该数据集包含大约 5000 部电影的相关数据。本次实验使用数据集中有关电影的数据表 tmdb_5000_movies.csv 进行实验。数据包含以下字段:

字段名称 解释 例子
budget 预算 10000000
genres 体裁 "[{""id"": 18, ""name"": ""Drama""}]"
homepage 主页 ""
id id 268238
keywords 关键词 "[{""id"": 14636, ""name"": ""india""}]"
original_language 原始语言 en
original_title 原标题 The Second Best Exotic Marigold Hotel
overview 概览 As the Best Exotic Marigold Hotel ...
popularity 流行度 17.592299
production_companies 生产公司 "[{""name"": ""Fox Searchlight Pictures"", ""id"": 43}, ...]"
production_countries 生产国家 "[{""iso31661"": ""GB"", ""name"": ""United Kingdom""}, ...]"
release_date 发行日期 2015-02-26
revenue 盈收 85978266
runtime 片长 122
spoken_languages 语言 "[{""iso6391"": ""en"", ""name"": ""English""}]"
status 状态 Released
tagline 宣传语 ""
title 标题 The Second Best Exotic Marigold Hotel
vote_average 平均分 6.3
vote_count 投票人数 272

由于数据中某些字段包含 json 数据,因此直接使用 DataFrame 进行读取会出现分割错误,所以如果要创建 DataFrame,需要先直接读取文件生成 RDD,再将 RDD 转为 DataFrame。过程中,使用 python3 中的 csv 模块对数据进行解析和转换。

为了更方便的对 csv 文件转化的 RDD 进行处理,需要首先去除csv文件的标题行。完成后,将处理好的文件 tmdb_5000_movies.csv 存储到 HDFS 上方便进一步的处理,使用下面命令将文件上传至 HDFS:

# 启动Hadoop
cd /usr/local/hadoop
./sbin/start-dfs.sh
# 在HDFS文件系统中创建/OverDue目录
./bin/hdfs dfs -mkdir /data
# 上传文件到HDFS文件系统中
./bin/hdfs dfs -put ~/tmdb_5000_movies.csv  #这里和原po不一样,以本博客为准

此时文件在 HDFS 上的路径为 /user/hadoop/tmdb_5000_movies.csv。之后在程序中,使用下面语句即可读取该文件:

sc.textFile(tmdb_5000_movies.csv)

使用 Spark 将数据转为 DataFrame

关键路径:

hdfs://localhost:8020/user/hadoop/tmdb_5000_movies.csv

为了创建 DataFrame,首先需要将 HDFS 上的数据加载成 RDD,再将 RDD 转化为 DataFrame。下面代码段完成从文件到 RDD 再到 DataFrame 的转化:
下面代码段完成从文件到 RDD 再到 DataFrame 的转化:

from pyspark import SparkContext
from pyspark.sql import SparkSession, Row
from pyspark.sql.types import StringType, StructField, StructType
import json # 用于后面的流程
import csv

# 1. 创建 SparkSession 和 SparkContext 对象
sc = SparkContext('local', 'spark_project')
sc.setLogLevel('WARN') # 减少不必要的 LOG 输出
spark = SparkSession.builder.getOrCreate()

# 2. 为 RDD 转为 DataFrame 创建 schema
schemaString = "budget,genres,homepage,id,keywords,original_language,original_title,overview,popularity,production_companies,production_countries,release_date,revenue,runtime,spoken_languages,status,tagline,title,vote_average,vote_count"
fields = [StructField(field, StringType(), True)
          for field in schemaString.split(")]
schema = StructType(fields)

# 3. 对于每一行用逗号分隔的数据,使用 csv 模块进行解析并转为 Row 对象,得到可以转为 DataFrame 的 RDD
moviesRdd = sc.textFile('tmdb_5000_movies.csv').map(
    lambda line: Row(*next(csv.reader([line]))))

# 4. 使用 createDataFrame 创建 DataFrame
mdf = spark.createDataFrame(moviesRdd, schema)

上述代码完成 4 件事:
首先,创建 SparkSession 和 SparkContext 对象。
然后,为 RDD 转为 DataFrame 制作表头 (schema)。schema 是一个 StructType 对象,该对象使用一个 StructField 数组创建。
每一个 StructField 都代表结构化数据中的一个字段,构造 StructField 需要 3 个参数

  1. 字段名称
  2. 字段类型
  3. 字段是否可以为空
    下面是这些对象的结构关系:
StructType([StructField(name, type, null), ..., StructField(name, type, null)])

接着,开始创建用于转为 DataFrame 的 RDD。这个过程首先读取 HDFS 上的数据文件,然后为了将 RDD 转为 DataFrame,还需要将数据的每一行转为一个 Row 对象。
这个过程首先使用 csv 模块进行解析,得到一个包含每个字段的迭代器:

csv.reader([line]) # 这里 [line] 表示包含一行数据的数组

然后使用 next 函数将迭代器中的数据读取到数组中:

next(csv.reader([line]))

最后使用 * 将数组转为 Row 对象的构造函数参数,创建 Row 对象:

Row(*next(csv.reader([line])))

至此,moviesRdd 中每一行为一个 Row 对象。
最后,通过 SparkSession 接口 createDataFrame ,使用准备好的表头 (schema) 和 RDD 创建 DataFrame:

mdf = spark.createDataFrame(moviesRdd, schema)

至此完成 DataFrame 的创建。

使用 Spark 进行数据分析

下面使用通过 Spark 处理得到的 DataFrame mdf 进行数据分析,首先对数据中的主要字段单独进行分析(概览小节),然后再分析不同字段间的关系(关系小节)。
为了方便进行数据可视化,每个不同的分析,都将分析结果导出为 json 文件由 web 页面读取并进行可视化。导出直接使用下面的 save 函数:

def save(path, data):
  with open(path, 'w') as f:
    f.write(data)

该函数向 path 中写入 data。
下面分别介绍各个分析的生成过程。

1.概览

这个部分对数据进行整体的分析。

1. TMDb 电影中的体裁分布

从上面的数据字典描述可以看出,电影的体裁字段是一个 json 格式的数据,因此,为了统计不同体裁的电影的数量,需要首先解析 json 数据,从中取出每个电影对应的体裁数组,然后使用词频统计的方法统计不同体裁出现的频率,即可得到电影的体裁分布。
首先实现一个函数 countByJson(field) ,该函数实现解析 json 格式字段从中提取出 name 并进行词频统计的功能:

def countByJson(field):
    return mdf.select(field).filter(mdf[field] != '').rdd.flatMap(lambda g: [(v, 1) for v in map(lambda x: x['name'], json.loads(g[field]))]).repartition(1).reduceByKey(lambda x, y: x + y)

该函数返回一个 RDD,整个过程如下所示。

基于这个函数实现 countByGenres 用来生成不同体裁的电影数统计结果:

def countByGenres():
    res = countByJson("genres").collect()
    return list(map(lambda v: {"genre": v[0], "count": v[1]}, res))

这个函数调用 countByJson 得到频率统计结果,并将其转为 json 数据格式并返回,方便进行可视化。最终函数返回数据格式如下:

[{
    "genre": ...,
    "count": ...
}, {
    "genre": ...,
    "count": ...
}, ...]

接着,使用下面代码进行数据导出至 genres.json 方便之后进行可视化

save('genres.json', json.dumps(countByGenres())) # 确保 json 包已导入
2. 前 100 个常见关键词

该项分析电影关键词中出现频率最高的前一百个。由于关键词字段也是 json 格式数据,因此调用 countByJson 进行频率统计,同时对于统计结果进行降序排序并取前 100 项即可:

def countByKeywords():
    res = countByJson("keywords").sortBy(lambda x: -x[1]).take(100)
    return list(map(lambda v: {"x": v[0], "value": v[1]}, res))

最终该函数返回 json 数据格式如下:

[{
    "x": ...,
    "value": ...
}, {
    "x": ...,
    "value": ...
}, ...]

接着,使用下面代码将数据导出至 keywords.json 方便之后进行可视化

save('keywords.json', json.dumps(countByKeywords()))
3. TMDb 中最常见的 10 种预算数

这一项探究电影常见的预算数是多少,因此需要对电影预算进行频率统计,代码如下:

def countByBudget(order='count', ascending=False):
    return mdf.filter(mdf["budget"] != 0).groupBy("budget").count().orderBy(order, ascending=ascending).toJSON().map(lambda j: json.loads(j)).take(10)

首先,需要对预算字段进行过滤,去除预算为 0 的项目,然后根据预算聚合并计数,接着根据计数进行排序,并将结果导出为 json 字符串,为了统一输出,这里将 json 字符串转为 python 对象,最后取前 10 项作为最终的结果。
最终该函数返回 json 数据格式如下:

[{
    "budget": ...,
    "count": ...
}, {
    "budget": ...,
    "count": ...
}, ...]

接着,使用下面代码进行数据导出至 budget.json 方便之后进行可视化

save('budget.json', json.dumps(countByBudget()))
4. TMDb 中最常见电影时长 (只展示电影数大于 100 的时长)

这一项统计 TMDb 中最常见的电影时长,首先,需要过滤时长为 0 的电影,然后根据时长字段聚合并计数,接着过滤掉出现频率小于 100 的时长 (这一步是为了方便可视化,避免过多冗余信息)得到最终的结果。

def distrbutionOfRuntime(order='count', ascending=False):
    return mdf.filter(mdf["runtime"] != 0).groupBy("runtime").count().filter('count>=100').toJSON().map(lambda j: json.loads(j)).collect()

最终该函数返回 json 数据格式如下:

[{
    "runtime": ...,
    "count": ...
}, {
    "runtime": ...,
    "count": ...
}, ...]

接着,使用下面代码进行数据导出至 runtime.json 方便之后进行可视化

save('runtime.json', json.dumps(distrbutionOfRuntime()))
5. 生产电影最多的 10 大公司

这一项统计电影产出最多的 10 个公司,同样使用 countByJson 对 JSON 数据进行频率统计,然后进行降序排列取前 10 项即可。

def countByCompanies():
    res = countByJson("production_companies").sortBy(lambda x: -x[1]).take(10)
    return list(map(lambda v: {"company": v[0], "count": v[1]}, res))

最终该函数返回 JSON 数据格式如下:

[{
    "company": ...,
    "count": ...
}, {
    "company": ...,
    "count": ...
}, ...]

接着,使用下面代码进行数据导出至 company_count.json 方便之后进行可视化

save('company_count.json', json.dumps(countByCompanies()))
6. TMDb 中的 10 大电影语言

该项统计 TMDb 中出现最多的语言,与前面类似,该字段也是 JSON 数据,因此首先对每个项目进行词频统计,然后过滤掉语言为空的项目,最后排序取前十即可。

def countByLanguage():
    res = countByJson("spoken_languages").filter(
        lambda v: v[0] != '').sortBy(lambda x: -x[1]).take(10)
    return list(map(lambda v: {"language": v[0], "count": v[1]}, res))

最终该函数返回 json 数据格式如下:

[{
    "language": ...,
    "count": ...
}, {
    "language": ...,
    "count": ...
}, ...]

接着,使用下面代码进行数据导出至 language.json 方便之后进行可视化

save('language.json', json.dumps(countByLanguage()))
2.关系

这个部分考虑数据之间的关系。

1. 预算与评价的关系

这部分考虑预算与评价之间的关系,因此对于每个电影,需要导出如下的数据:

[电影标题,预算,评价]

基于 DataFrame 对数据进行字段过滤即可:

def budgetVote():
    return mdf.select("title", "budget", "vote_average").filter(mdf["budget"] != 0).filter(mdf["vote_count"] > 100).collect()

这里还要注意过滤掉预算为空的数据,同时,结果只保留了投票数大于 100 的数据确保公平。
得到的数据存储在 budget_vote.json 中:

save('budget_vote.json', json.dumps(budgetVote()))
2. 发行时间与评价的关系

这部分考虑发行时间与评价之间的关系,因此对于每个电影,需要导出如下的数据:

[电影标题,发行时间,评价]

基于 DataFrame 对数据进行字段过滤即可:

def dateVote():
    return mdf.select(mdf["release_date"], "vote_average", "title").filter(mdf["release_date"] != "").filter(mdf["vote_count"] > 100).collect()

这里还是要注意过滤掉发行时间为空的数据,保留投票数大于 100 的数据。
得到的数据存储在 date_vote.json 中:

save('date_vote.json', json.dumps(dateVote()))
3. 流行度和评价的关系

这部分考虑流行度与评价之间的关系,因此对于每个电影,需要导出如下的数据:

[电影标题,流行度,评价]

基于 DataFrame 对数据进行字段过滤即可:

def popVote():
    return mdf.select("title", "popularity", "vote_average").filter(mdf["popularity"] != 0).filter(mdf["vote_count"] > 100).collect()

同时,过滤掉流行度为 0 的数据,保留投票数大于 100 的数据。
得到的数据存储在 pop_vote.json 中:

save('pop_vote.json', json.dumps(popVote()))
4. 公司生产的电影平均分和数量的关系

这部分计算每个公司生产的电影数量及这些电影的平均分分布。首先,需要对数据进行过滤,去掉生产公司字段为空和评价人数小于 100 的电影,然后对于每一条记录,得到一条如下形式的记录:

[公司名,(评分,1)]

接着将所有记录的评分和计数累加,最后用总评分除以计数得到一个公司的平均评分及电影数,整个过程如下所示。

def moviesVote():
    return mdf.filter(mdf["production_companies"] != '').filter(mdf["vote_count"] > 100).rdd.flatMap(lambda g: [(v, [float(g['vote_average']), 1]) for v in map(lambda x: x['name'], json.loads(g["production_companies"]))]).repartition(1).reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]]).map(lambda v: [v[0], v[1][0] / v[1][1], v[1][1]]).collect()

将得到的数据存储在 movies_vote.json 中:

save('movies_vote.json', json.dumps(moviesVote()))
5. 电影预算和营收的关系

这部分考虑电影的营收情况,因此对于每个电影,需要导出如下的数据:

[电影标题,预算,收入]

基于 DataFrame 对数据进行字段过滤即可:

def budgetRevenue():
    return mdf.select("title", "budget", "revenue").filter(mdf["budget"] != 0).filter(mdf['revenue'] != 0).collect()

过滤掉预算,收入为 0 的数据。
得到的数据存储在 budget_revenue.json 中:

save('budget_revenue.json', json.dumps(budgetRevenue()))
3.整合调用

最后,将上面的过程整合起来方便进行调用,因此在 analyst.py 中添加 main 函数:

if __name__ == "__main__":
    m = {
        "countByGenres": {
            "method": countByGenres,
            "path": "genres.json"
        },
        "countByKeywords": {
            "method": countByKeywords,
            "path": "keywords.json"
        },
        "countByCompanies": {
            "method": countByCompanies,
            "path": "company_count.json"
        },
        "countByBudget": {
            "method": countByBudget,
            "path": "budget.json"
        },
        "countByLanguage": {
            "method": countByLanguage,
            "path": "language.json"
        },
        "distrbutionOfRuntime": {
            "method": distrbutionOfRuntime,
            "path": "runtime.json"
        },
        "budgetVote": {
            "method": budgetVote,
            "path": "budget_vote.json"
        },
        "dateVote": {
            "method": dateVote,
            "path": "date_vote.json"
        },
        "popVote": {
            "method": popVote,
            "path": "pop_vote.json"
        },
        "moviesVote": {
            "method": moviesVote,
            "path": "movies_vote.json"
        },
        "budgetRevenue": {
            "method": budgetRevenue,
            "path": "budget_revenue.json"
        }
    }
    base = "static/" # 生成文件的 base 目录
    if not os.path.exists(base): # 如果目录不存在则创建一个新的
        os.mkdir(base)

    for k in m: # 执行上述所有方法
        p = m[k]
        f = p["method"]
        save(base + m[k]["path"], json.dumps(f()))
        print ("done -> " + k + " , save to -> " + base + m[k]["path"])

上面代码将所有的函数整合在变量 m中,然后通过循环调用上述所有方法并导出json文件。

4.完整代码
from pyspark import SparkContext
from pyspark.sql import SparkSession, Row
from pyspark.sql.types import StringType, StructField, StructType
import json
import csv
import os

sc = SparkContext('local', 'spark_project')
sc.setLogLevel('WARN')
spark = SparkSession.builder.getOrCreate()

schemaString = "budget,genres,homepage,id,keywords,original_language,original_title,overview,popularity,production_companies,production_countries,release_date,revenue,runtime,spoken_languages,status,tagline,title,vote_average,vote_count"
fields = [StructField(field, StringType(), True)
          for field in schemaString.split(",")]
schema = StructType(fields)

moviesRdd = sc.textFile('hdfs://localhost:8020/user/hadoop/tmdb_5000_movies.csv').map(
    lambda line: Row(*next(csv.reader([line]))))
mdf = spark.createDataFrame(moviesRdd, schema)


def countByJson(field):
    return mdf.select(field).filter(mdf[field] != '').rdd.flatMap(lambda g: [(v, 1) for v in map(lambda x: x['name'], json.loads(g[field]))]).repartition(1).reduceByKey(lambda x, y: x + y)

# 体裁统计


def countByGenres():
    res = countByJson("genres").collect()
    return list(map(lambda v: {"genre": v[0], "count": v[1]}, res))

# 关键词词云


def countByKeywords():
    res = countByJson("keywords").sortBy(lambda x: -x[1]).take(100)
    return list(map(lambda v: {"x": v[0], "value": v[1]}, res))

# 公司电影产出数量


def countByCompanies():
    res = countByJson("production_companies").sortBy(lambda x: -x[1]).take(10)
    return list(map(lambda v: {"company": v[0], "count": v[1]}, res))

# 预算统计


def countByBudget(order='count', ascending=False):
    return mdf.filter(mdf["budget"] != 0).groupBy("budget").count().orderBy(order, ascending=ascending).toJSON().map(lambda j: json.loads(j)).take(10)

# 语言统计


def countByLanguage():
    res = countByJson("spoken_languages").filter(
        lambda v: v[0] != '').sortBy(lambda x: -x[1]).take(10)
    return list(map(lambda v: {"language": v[0], "count": v[1]}, res))

# 电影时长分布 > 100 min


def distrbutionOfRuntime(order='count', ascending=False):
    return mdf.filter(mdf["runtime"] != 0).groupBy("runtime").count().filter('count>=100').toJSON().map(lambda j: json.loads(j)).collect()

# 预算评价关系


def budgetVote():
    return mdf.select("title", "budget", "vote_average").filter(mdf["budget"] != 0).filter(mdf["vote_count"] > 100).collect()

# 上映时间评价关系


def dateVote():
    return mdf.select(mdf["release_date"], "vote_average", "title").filter(mdf["release_date"] != "").filter(mdf["vote_count"] > 100).collect()

# 流行度评价关系


def popVote():
    return mdf.select("title", "popularity", "vote_average").filter(mdf["popularity"] != 0).filter(mdf["vote_count"] > 100).collect()


# 电影数量和评价的关系
def moviesVote():
    return mdf.filter(mdf["production_companies"] != '').filter(mdf["vote_count"] > 100).rdd.flatMap(lambda g: [(v, [float(g['vote_average']), 1]) for v in map(lambda x: x['name'], json.loads(g["production_companies"]))]).repartition(1).reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]]).map(lambda v: [v[0], v[1][0] / v[1][1], v[1][1]]).collect()

# 预算和营收的关系
def budgetRevenue():
    return mdf.select("title", "budget", "revenue").filter(mdf["budget"] != 0).filter(mdf['revenue'] != 0).collect()

def save(path, data):
  with open(path, 'w') as f:
    f.write(data)

if __name__ == "__main__":
    m = {
        "countByGenres": {
            "method": countByGenres,
            "path": "genres.json"
        },
        "countByKeywords": {
            "method": countByKeywords,
            "path": "keywords.json"
        },
        "countByCompanies": {
            "method": countByCompanies,
            "path": "company_count.json"
        },
        "countByBudget": {
            "method": countByBudget,
            "path": "budget.json"
        },
        "countByLanguage": {
            "method": countByLanguage,
            "path": "language.json"
        },
        "distrbutionOfRuntime": {
            "method": distrbutionOfRuntime,
            "path": "runtime.json"
        },
        "budgetVote": {
            "method": budgetVote,
            "path": "budget_vote.json"
        },
        "dateVote": {
            "method": dateVote,
            "path": "date_vote.json"
        },
        "popVote": {
            "method": popVote,
            "path": "pop_vote.json"
        },
        "moviesVote": {
            "method": moviesVote,
            "path": "movies_vote.json"
        },
        "budgetRevenue": {
            "method": budgetRevenue,
            "path": "budget_revenue.json"
        }
    }
    base = "static/"
    if not os.path.exists(base):
        os.mkdir(base)

    for k in m:
        p = m[k]
        f = p["method"]
        save(base + m[k]["path"], json.dumps(f()))
        print ("done -> " + k + " , save to -> " + base + m[k]["path"])
    # save("test.jj", json.dumps(countByGenres()))

5.数据分析结果

【大数据基础】基于 TMDB 数据集的电影数据分析
以下为json格式的数据处理结果:
【大数据基础】基于 TMDB 数据集的电影数据分析

数据可视化

数据可视化基于阿里开源的数据可视化工具 G2 实现。G2 是一套基于可视化编码的图形语法,以数据驱动,具有高度的易用性和扩展性,用户无需关注各种繁琐的实现细节,一条语句即可构建出各种各样的可交互的统计图表。下面以 TMDb 中电影的体裁分布为例说明可视化过程。
首先使用 python Web 框架 bottle 访问可视化页面方便进行 json 数据的读取。使用下面代码web.py 可以实现一个简单的静态文件读取:

import bottle
from bottle import route, run, static_file
import json

@route('/static/<filename>')
def server_static(filename):
    return static_file(filename, root="/home/hadoop/jupyternotebook/static")

@route("/<name:re:.*\.html>")
def server_page(name):
    return static_file(name, root=".")

@route("/")
def index():
    return static_file("index.html", root=".")


run(host="0.0.0.0", port=9996)

bottle 对于接收到的请求进行路由

  1. 对于 web 服务启动目录中 static 文件夹下的文件,直接返回对应文件名的文件;
  2. 对于启动目录下的 html 文件,也返回对应的页面。
  3. 直接访问本机的 9999 端口,则返回主页。
    最后,将 web 服务绑定到本机的 9999 端口。根据上面的实现,对于 web 页面 (html 文件),直接放在服务启动的目录下,对于 Spark 分析的结果,则保存在 static 目录下。
    接下来实现主页文件 index.html。
<!DOCTYPE html>
<html lang="en">

<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width,height=device-height">
  <title>TMDb 电影数据分析</title>
  <style>
    /* 这里省略 */
  </style>
</head>

<body>
  <div class="container">
    <h1 style="font-size: 40px;"># TMDb Movie Data Analysis <br> <small style="font-size: 55%;color: rgba(0,0,0,0.65);">>
        Big Data Processing Technology on Spark</small> </h1>
    <hr>
    <h1 style="font-size: 30px;color: #404040;">I. Overviews</h1>
    <div class="chart-group">
      <h2>- Distribution of Genres in TMDb <br> <small style="font-size: 72%;">> This figure
          compares the genre
          distribution in TMDb, and you can see that most of the movies in TMDb is Drama.</small> </h2>
      <iframe src="genres.html" class="frame" frameborder="0"></iframe>
    </div>
  </div>

  <script>/*Fixing iframe window.innerHeight 0 issue in Safari*/document.body.clientHeight;</script>
</body>

</html>

每个图表通过一个 iframe 引入到主页中。对于每一个图表,主页中都包含标题和图表所在的页面的 iframe。对于 TMDb 中的体裁分布分析结果,在 genres.html 中实现,下面对该文件进行实现。

<!DOCTYPE html>
<html lang="en">

<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width,height=device-height">
  <title>TOP 5000 电影数据分析</title>
  <style>
    ::-webkit-scrollbar {
      display: none;
    }

    html,
    body {
      font-family: 'Ubuntu Condensed';
      height: 100%;
      margin: 0;
      color: rgba(0, 0, 0, 0.85);
    }
  </style>
</head>

<body>
  <div id="mountNode"></div>
  </div>
  <script>/*Fixing iframe window.innerHeight 0 issue in Safari*/document.body.clientHeight;</script>
  <script src="static/g2.min.js"></script>
  <script src="static/data-set.min.js"></script>
  <script src="static/jquery-3.2.1.min.js"></script>
  <script>
    function generateChart(id, type, xkey, xlabel, ykey, ylabel) {
      var chart = new G2.Chart({ // 初始化 chart
        container: id,
        forceFit: true,
        height: 500,
        padding: [40, 80, 80, 80],
      });
      chart.scale(ykey, { // 对 y 尺度进行设置
        alias: ylabel,
        min: 0,
        // max: 3000,
        tickCount: 4
      });

      chart.axis(xkey, { // 对 x 坐标轴设置
        label: {
          textStyle: {
            fill: '#aaaaaa'
          }
        },
        tickLine: {
          alignWithLabel: false,
          length: 0
        }
      });

      chart.axis(ykey, { // 对 y 坐标轴设置
        label: {
          textStyle: {
            fill: '#aaaaaa'
          }
        },
        title: {
          offset: 50
        }
      });
      chart.legend({    // 设置图例
        position: 'top-center'
      });
        //设置标签和颜色等
      chart.interval().position(`${xkey}*${ykey}`).label(ykey).color('#ffb877').opacity(1).adjust([{
        type,
        marginRatio: 1 / 32
      }]);
      chart.render();

      return chart;
    }
  </script>
  <script>
    // 调用上述函数创建图表
    let chart = generateChart('mountNode', 'dodge', 'genre', 'genres', 'count', '# movies');

    window.onload = () => {
      // 当页面加载后使用 jQuery 提供的方法进行json文件的读取。
      $.getJSON("/static/genres.json", d => {
        chart.changeData(d) // 使用 chart 的更新数据 API 进行数据更新。
      })
    }
  </script>
</body>

</html>

代码的过程解释以注释给出,使用该页面前,还需要将对应的 js 库( g2.js, data-set.js, jquery )放入到 static 文件夹下。
之后执行代码:
【大数据基础】基于 TMDB 数据集的电影数据分析

实验结果

可视化结果

概览
1.TMDb 电影中的体裁分布

【大数据基础】基于 TMDB 数据集的电影数据分析
从图中可以看出,Drama 的电影在 TMDb 中占比较大,其次 Science Fiction、Action 和 Thriller 的数量也较多。

2. 前 100 个常见关键词

【大数据基础】基于 TMDB 数据集的电影数据分析
TMDb 中最常见的关键词是 Woman Director,其次还有 independent film 等。

3. TMDb 中最常见的 10 种预算数

【大数据基础】基于 TMDB 数据集的电影数据分析
有 144 部电影的预算为 20,000,000,是最常见的预算值。

4. TMDb 中最常见电影时长 (只展示电影数大于 100 的时长)

【大数据基础】基于 TMDB 数据集的电影数据分析
多数电影的时长是90分钟或100分钟。

5. 生产电影最多的 10 大公司

【大数据基础】基于 TMDB 数据集的电影数据分析
生产电影较多的公司是 Warner Bros.、Universal Pictures等。

6. TMDb 中的 10 大电影语言

【大数据基础】基于 TMDB 数据集的电影数据分析
大多数电影中的语言是英语。

关系
预算与评价的关系

【大数据基础】基于 TMDB 数据集的电影数据分析

发行时间与评价的关系

【大数据基础】基于 TMDB 数据集的电影数据分析

流行度与评价的关系

【大数据基础】基于 TMDB 数据集的电影数据分析

公司生产的电影平均分和数量的关系

【大数据基础】基于 TMDB 数据集的电影数据分析
从图中可以看出,一个公司生产的电影越多,其电影平均分越接近整体的平均水平。

电影预算和营收的关系

【大数据基础】基于 TMDB 数据集的电影数据分析

网页查看

【大数据基础】基于 TMDB 数据集的电影数据分析
【大数据基础】基于 TMDB 数据集的电影数据分析文章来源地址https://www.toymoban.com/news/detail-480525.html

到了这里,关于【大数据基础】基于 TMDB 数据集的电影数据分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据可视化——基于Python豆瓣电影数据可视化分析

    本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与演员表现的工具。项目的关键步骤包括

    2024年02月04日
    浏览(75)
  • 大数据可视化——基于Python豆瓣电影数据可视化分析系统

    本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与演员表现的工具。项目的关键步骤包括

    2024年01月21日
    浏览(56)
  • python基于python的豆瓣电影数据分析可视化系统论文

    近些年来,随着科技的飞速发展,互联网的普及逐渐延伸到各行各业中,给人们生活带来了十分的便利,商家利用计算机网络实现信息化管理,使整个豆瓣电影数据分析可视化管理的发展和服务水平有显著提升。 本文拟采用Python技术和Django 搭建系统框架,后台使用MySQL数据库

    2024年01月23日
    浏览(53)
  • 基于python电影票房数据分析可视化系统 毕业设计开题报告

     博主介绍 :《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,免费 项目配有对应开发文档、开题报告、任务书、PPT、论文模版

    2024年02月05日
    浏览(74)
  • 基于Python的豆瓣电影数据分析可视化系统的设计与实现-可视化分析大屏

    收藏关注不迷路 本文拟采用Python技术和Django 搭建系统框架,后台使用MySQL数据库进行信息管理,设计开发基于python的豆瓣电影数据分析可视化系统。通过调研和分析,系统拥有管理员和用户两个角色,主要具备个人中心、电影管理、用户管理、系统管理等功能模块。将纸质管

    2024年02月03日
    浏览(64)
  • 大数据可视化项目—基于Python豆瓣电影数据可视化分析系统的设计与实现

    本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与演员表现的工具。项目的关键步骤包括

    2024年02月04日
    浏览(52)
  • 毕设分享 基于Python大数据的电影可视化分析系统(源码+论文)

    今天学长向大家介绍一个机器视觉的毕设项目 毕设分享 基于Python大数据的电影可视化分析系统(源码+论文) 项目获取: https://gitee.com/sinonfin/algorithm-sharing 使读者能够了解MOVA项目的概况 电影行业从业人员、电影爱好者 项目名称:Movie Visualization Analysis system (MOVA) 用户单位

    2024年01月18日
    浏览(64)
  • 基于Python的海量豆瓣电影、数据获取、数据预处理、数据分析、可视化、大屏设计项目(含数据库)

    项目介绍 有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主!!!!!!!!!! 本文基于Python的网络爬虫手段对豆瓣电影网站进行数据的抓取,通过合理的分析豆瓣网站的网页结构,并设计出规则来获取电影数据的JSON数据包,采用正态分布的延时措施

    2024年02月12日
    浏览(59)
  • 网络爬虫丨基于requests+mysql爬取猫眼热门电影数据做可视化分析

    本期内容 :基于requests+mysql爬取猫眼热门电影数据做可视化分析 实验需求 anaconda丨pycharm python3.11.4 requests mysql 项目下载地址:https://download.csdn.net/download/m0_68111267/88737727 学习网络爬虫相关技术,熟悉爬虫基本库requests的使用;学习数据库技术,熟悉mysql数据库的基本操作。本文

    2024年02月02日
    浏览(38)
  • 毕业设计-基于大数据的电影爬取与可视化分析系统-python

    目录 前言 课题背景和意义 实现技术思路 实现效果图样例     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学

    2024年01月21日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包