人工智能(pytorch)搭建模型11-pytorch搭建DCGAN模型,一种生成对抗网络GAN的变体实际应用

这篇具有很好参考价值的文章主要介绍了人工智能(pytorch)搭建模型11-pytorch搭建DCGAN模型,一种生成对抗网络GAN的变体实际应用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型11-pytorch搭建DCGAN模型,一种生成对抗网络GAN的变体实际应用,本文将具体介绍DCGAN模型的原理,并使用PyTorch搭建一个简单的DCGAN模型。我们将提供模型代码,并使用一些数据样例进行训练和测试。最后,我们将展示训练过程中的损失值和准确率。

文章目录:

  1. DCGAN模型简介
  2. DCGAN模型原理
  3. 使用PyTorch搭建DCGAN模型
  4. 数据样例
  5. 训练模型
  6. 测试模型
  7. 总结

1. DCGAN模型简介

DCGAN全称:Deep Convolutional Generative Adversarial Networks,它是一种生成对抗网络(GAN)的变体,它使用卷积神经网络(CNN)作为生成器和判别器。DCGAN在图像生成任务中表现出色,能够生成具有高分辨率和清晰度的图像。

2. DCGAN模型原理

DCGAN模型由两个部分组成:生成器(Generator)和判别器(Discriminator)。生成器负责生成图像,而判别器负责判断图像是否为真实图像。在训练过程中,生成器和判别器相互竞争,生成器试图生成越来越逼真的图像,而判别器试图更准确地识别生成的图像是否为真实图像。这个过程持续进行,直到生成器生成的图像足够逼真,以至于判别器无法区分生成的图像和真实图像。

DCGAN模型的数学原理表示:

生成器(Generator):

G ( z ) = x G(z) = x G(z)=x

其中, z z z是输入的随机噪声向量, x x x是生成的图像。

判别器(Discriminator):

D ( x ) = y D(x) = y D(x)=y

其中, x x x是输入的图像, y y y是判别器对图像的判断结果,表示图像是否为真实图像。

GAN的损失函数:

min ⁡ G max ⁡ D V ( D , G ) = E x ∼ p d a t a ( x ) [ log ⁡ D ( x ) ] + E z ∼ p z ( z ) [ log ⁡ ( 1 − D ( G ( z ) ) ) ] \min_G \max_D V(D,G) = \mathbb{E}{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1-D(G(z)))] GminDmaxV(D,G)=Expdata(x)[logD(x)]+Ezpz(z)[log(1D(G(z)))]

其中, p d a t a ( x ) p_{data}(x) pdata(x)表示真实数据的分, p z ( z ) p_z(z) pz(z)表示噪声向量的分布, D ( x ) D(x) D(x)表示判别器对图像 x x x的判断结果, G ( z ) G(z) G(z)表示生成器生成的图像, log ⁡ D ( x ) \log D(x) logD(x)表示判别器将真实图像判断为真实图像的概率, log ⁡ ( 1 − D ( G ( z ) ) ) \log(1-D(G(z))) log(1D(G(z)))表示判别器将生成图像判断为真实图像的概率。

人工智能(pytorch)搭建模型11-pytorch搭建DCGAN模型,一种生成对抗网络GAN的变体实际应用

3. 使用PyTorch搭建DCGAN模型

首先,我们需要导入所需的库:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as dset
from torch.autograd import Variable

接下来,我们定义生成器和判别器的网络结构:

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.main = nn.Sequential(
            # 输入是一个100维的向量
            nn.ConvTranspose2d(100, 512, 4, 1, 0, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            # 输出为(512, 4, 4)
            nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            # 输出为(256, 8, 8)
            nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(True),
            # 输出为(128, 16, 16)
            nn.ConvTranspose2d(128, 3, 4, 2, 1, bias=False),
            nn.Tanh()
            # 输出为(3, 32, 32)
        )

    def forward(self, input):
        return self.main(input)

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.main = nn.Sequential(
            # 输入为(3, 32, 32)
            nn.Conv2d(3, 128, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # 输出为(128, 16, 16)
            nn.Conv2d(128, 256, 4, 2, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2, inplace=True),
            # 输出为(256, 8, 8)
            nn.Conv2d(256, 512, 4, 2, 1, bias=False),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2, inplace=True),
            # 输出为(512, 4, 4)
            nn.Conv2d(512, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

    def forward(self, input):
        return self.main(input).view(-1)

4. 数据样例

我们将使用CIFAR-10数据集进行训练。首先,我们需要对数据进行预处理:

if __name__ =="__main__":
    transform = transforms.Compose([
        transforms.Resize(32),
        transforms.CenterCrop(32),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ])
    
    trainset = dset.CIFAR10(root='./data', train=True, download=True, transform=transform)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2)

5. 训练模型

接下来,我们将训练DCGAN模型:

# 初始化生成器和判别器
netG = Generator()
netD = Discriminator()

# 设置损失函数和优化器
criterion = nn.BCELoss()
optimizerD = optim.Adam(netD.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=0.0002, betas=(0.5, 0.999))

# 训练模型
num_epochs = 10

for epoch in range(num_epochs):
    for i, data in enumerate(trainloader, 0):
        # 更新判别器
        netD.zero_grad()
        real, _ = data
        batch_size = real.size(0)
        label = torch.full((batch_size,), 1)
        output = netD(real)
        errD_real = criterion(output, label)
        errD_real.backward()
        noise = torch.randn(batch_size, 100, 1, 1)
        fake = netG(noise)
        label.fill_(0)
        output = netD(fake.detach())
        errD_fake = criterion(output, label)
        errD_fake.backward()
        errD = errD_real + errD_fake
        optimizerD.step()

        # 更新生成器
        netG.zero_grad()
        label.fill_(1)
        output = netD(fake)
        errG = criterion(output, label)
        errG.backward()
        optimizerG.step()

        if i%5==0:
           # 打印损失值
           print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f' % (epoch, num_epochs, i, len(trainloader), errD.item(), errG.item()))

6. 测试模型

训练完成后,我们可以使用生成器生成一些图像进行测试:

import matplotlib.pyplot as plt
import numpy as np

def imshow(img):
    img = img / 2 + 0.5
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()

noise = torch.randn(64, 100, 1, 1)
fake = netG(noise)
imshow(torchvision.utils.make_grid(fake.detach()))

7. 总结

本文详细介绍了DCGAN模型的原理,并使用PyTorch搭建了一个简单的DCGAN模型。我们提供了模型代码,并使用CIFAR-10数据集进行训练和测试。最后,我们展示了训练过程中的损失值和生成的图像。希望本文能帮助您更好地理解DCGAN模型,并在实际项目中应用。文章来源地址https://www.toymoban.com/news/detail-480682.html

到了这里,关于人工智能(pytorch)搭建模型11-pytorch搭建DCGAN模型,一种生成对抗网络GAN的变体实际应用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能(pytorch)搭建模型14-pytorch搭建Siamese Network模型(孪生网络),实现模型的训练与预测

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型14-pytorch搭建Siamese Network模型(孪生网络),实现模型的训练与预测。孪生网络是一种用于度量学习(Metric Learning)和比较学习(Comparison Learning)的深度神经网络模型。它主要用于学习将两个输入样本映射到一个

    2024年02月11日
    浏览(143)
  • 人工智能(pytorch)搭建模型13-pytorch搭建RBM(受限玻尔兹曼机)模型,调通模型的训练与测试

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型13-pytorch搭建RBM(受限玻尔兹曼机)模型,调通模型的训练与测试。RBM(受限玻尔兹曼机)可以在没有人工标注的情况下对数据进行学习。其原理类似于我们人类学习的过程,即通过观察、感知和记忆不同事物的特点

    2024年02月10日
    浏览(77)
  • 人工智能(pytorch)搭建模型10-pytorch搭建脉冲神经网络(SNN)实现及应用

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型10-pytorch搭建脉冲神经网络(SNN)实现及应用,脉冲神经网络(SNN)是一种基于生物神经系统的神经网络模型,它通过模拟神经元之间的电信号传递来实现信息处理。与传统的人工神经网络(ANN)不同,SNN 中的

    2024年02月08日
    浏览(50)
  • 人工智能(pytorch)搭建模型8-利用pytorch搭建一个BiLSTM+CRF模型,实现简单的命名实体识别

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型8-利用pytorch搭建一个BiLSTM+CRF模型,实现简单的命名实体识别,BiLSTM+CRF 模型是一种常用的序列标注算法,可用于词性标注、分词、命名实体识别等任务。本文利用pytorch搭建一个BiLSTM+CRF模型,并给出数据样例,

    2024年02月09日
    浏览(63)
  • 人工智能(Pytorch)搭建模型2-LSTM网络实现简单案例

     本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052  大家好,我是微学AI,今天给大家介绍一下人工智能(Pytorch)搭建模型2-LSTM网络实现简单案例。主要分类三个方面进行描述:Pytorch搭建神经网络的简单步骤、LSTM网络介绍、Pytorch搭建LSTM网络的代码实战 目录

    2024年02月03日
    浏览(65)
  • 人工智能(Pytorch)搭建模型1-卷积神经网络实现简单图像分类

    本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052 目录 一、Pytorch深度学习框架 二、 卷积神经网络 三、代码实战 内容: 一、Pytorch深度学习框架 PyTorch是一个开源的深度学习框架,它基于Torch进行了重新实现,主要支持GPU加速计算,同时也可以在CPU上运行

    2024年02月03日
    浏览(65)
  • 人工智能(pytorch)搭建模型18-含有注意力机制的CoAtNet模型的搭建,加载数据进行模型训练

    大家好,我是微学AI,今天我给大家介绍一下人工智能(pytorch)搭建模型18-pytorch搭建有注意力机制的CoAtNet模型模型,加载数据进行模型训练。本文我们将详细介绍CoAtNet模型的原理,并通过一个基于PyTorch框架的实例,展示如何加载数据,训练CoAtNet模型,从操作上理解该模型。

    2024年02月16日
    浏览(66)
  • 人工智能(Pytorch)搭建模型5-注意力机制模型的构建与GRU模型融合应用

    大家好,我是微学AI,今天给大家介绍一下人工智能(Pytorch)搭建模型5-注意力机制模型的构建与GRU模型融合应用。注意力机制是一种神经网络模型,在序列到序列的任务中,可以帮助解决输入序列较长时难以获取全局信息的问题。该模型通过对输入序列不同部分赋予不同的 权

    2024年02月12日
    浏览(65)
  • 人工智能(pytorch)搭建模型16-基于LSTM+CNN模型的高血压预测的应用

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型16-基于LSTM+CNN模型的高血压预测的应用,LSTM+CNN模型搭建与训练,本项目将利用pytorch搭建LSTM+CNN模型,涉及项目:高血压预测,高血压是一种常见的性疾病,早期预测和干预对于防止其发展至严重疾病至关重要

    2024年02月12日
    浏览(74)
  • 人工智能(Pytorch)搭建transformer模型,真正跑通transformer模型,深刻了解transformer的架构

    大家好,我是微学AI,今天给大家讲述一下人工智能(Pytorch)搭建transformer模型,手动搭建transformer模型,我们知道transformer模型是相对复杂的模型,它是一种利用自注意力机制进行序列建模的深度学习模型。相较于 RNN 和 CNN,transformer 模型更高效、更容易并行化,广泛应用于神

    2023年04月10日
    浏览(65)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包