数字图像处理实验报告

这篇具有很好参考价值的文章主要介绍了数字图像处理实验报告。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

实验二、图像在空间域上的处理方法

实验三、图像在频率域上的处理方法


实验二、图像在空间域上的处理方法

一、实验目的

  1. 了解图像亮(灰)度变换与空间滤波的意义和手段;
  2. 熟悉图像亮(灰)度变换与空间滤波的MATLAB函数和语法;
  3. 熟练掌握应用MATLAB软件编程进行图像亮(灰)度变换与空间滤波的方法;
  4. 完成数字图像的对比度增强和直方图均衡化,设计空间域平滑和锐化滤波器,掌握数字图像在空间域的基本处理方法。

二、实验环境

MATLAB 2014以上版本、Win 8\10\11 系统

三、实验原理

图像亮(灰)度变换与空间滤波属于在空间域内处理图像,是直接对图像的像素进行处理。有两种重要的空间域处理方法,即亮度(或灰度级)变换与空间滤波,后一种方法有时称为邻域处理或空间卷积。

图像亮(灰)度变换采用MATLAB工具箱中的亮度变换函数、直方图处理函数等函数及其相应的语法格式对实验一生成的图像进行处理;空间滤波采用MATLAB工具箱中的标准(线性和非线性)空间滤波器对图像进行空间滤波处理。

涉及函数:imread、size、figure、imshow、subplot、imadd、imsubtract 、rgb2gray、imhist、histeq、imnoise、medfilt2

四、实验内容

(1)新建一个m文件,从桌面示例图像文件夹中读取一张彩色图像,转换为灰度图,读取该图像尺寸,并在一个figure窗口同时展示,标题分别为(“原图”)及(“灰度图”)。

代码:

clc;clear;clear all;

RGB=imread('V.jpg'); %图像读入

I=rgb2gray(RGB);   %把 RGB 图像转换成灰度图像

subplot(121);imshow(RGB),axis on,title("原图");

subplot(122);imshow(I),axis on,title("灰度图");

输出结果截图:

数字图像处理实验报告

(2)读取一张彩色图像,转换为灰度图,使用imadd及imsubtract 分别对图像进行亮度增和减操作,数值为自己学号末位数×2,并在一个figure窗口同时展示,标题分别为“原图”、“灰度图”、“提亮结果”、“亮度降低结果”。点击右侧工作区中对应图像矩阵,观察亮度增减前后数值变化。

代码:

clc;clear;clear all;

RGB=imread('V.jpg'); %图像读入

I=rgb2gray(RGB);   %把 RGB 图像转换成灰度图像

RGB2=imadd(RGB,20);

RGB3=imsubtract(RGB,20); %学号尾数为10

subplot(221);imshow(RGB),axis on,title("原图");

subplot(222);imshow(I),axis on,title("灰度图");

subplot(223);imshow(RGB2),axis on,title("提亮结果");

subplot(224);imshow(RGB3),axis on,title("亮度降低结果");

输出结果截图:

数字图像处理实验报告

(3)读取两张彩色图像并转换为灰度图,使用imhist函数显示该图像的直方图,并使用histeq函数分别进行进行直方图均衡化处理。同一个figure窗口中输出,标题分别为“原图1”、“灰度图1”,“原图2”,“灰度图2”、“灰度直方图1”、“灰度直方图2”、“直方图均衡化1”、“直方图均衡化2”。

观察不同图像对应灰度直方图的特征有何差异,对比同一张图直方图均衡化前后的灰度分布差异。

代码:

clc;clear;clear all;

RGB=imread('V.jpg'); %图像读入

RGB1=imread('V1.jpg'); %图像读入

I=rgb2gray(RGB);   %把 RGB 图像转换成灰度图像

I1=rgb2gray(RGB1);   %把 RGB 图像转换成灰度图像

subplot(421);imshow(RGB),axis on,title("原图1");

subplot(422);imshow(I),axis on,title("灰度图1");

subplot(423);imshow(RGB1),axis on,title("原图2");

subplot(424);imshow(I1),axis on,title("灰度图2");

% 计算直方图

hist = imhist(I);

hist1 = imhist(I1);

% 对图像进行直方图均衡化处理

img_eq = histeq(I);

img_eq1 = histeq(I1);

subplot(425);bar(hist);axis on,title("灰度直方图1");

subplot(426);bar(hist1);axis on,title("灰度直方图2");

subplot(427);histeq(I),axis on,title("直方图均衡化1");

subplot(428);histeq(I1),axis on,title("直方图均衡化2");

输出结果截图:

数字图像处理实验报告

(4)读取一张彩色图像并转换为灰度图,使用imnoise添加椒盐噪声,例如I1=imnoise(I,’salt& pepper’,0.04); 分别使用3*3、5*5、7*7、9*9大小的模板进行中值滤波,在相同figure中输出,标题分别为“原图”、“添加椒盐噪声”、“x*x模板中值滤波”。

代码:

% 读取彩色图像并转换为灰度图

clc;clear;clear all;

RGB=imread('V.jpg'); %图像读入

I=rgb2gray(RGB);   %把 RGB 图像转换成灰度图像

% 添加椒盐噪声

I_noise = imnoise(I, 'salt & pepper', 0.04);

% 使用不同大小的模板进行中值滤波

I_median3 = medfilt2(I_noise, [3 3]);

I_median5 = medfilt2(I_noise, [5 5]);

I_median7 = medfilt2(I_noise, [7 7]);

I_median9 = medfilt2(I_noise, [9 9]);

subplot(321);imshow(RGB),axis on,title("原图");

subplot(322);imshow(I_noise),axis on,title("添加椒盐噪声");

subplot(323);imshow(I_median3),axis on,title("3*3模板中值滤波");

subplot(324);imshow(I_median5),axis on,title("5*5模板中值滤波");

subplot(325);imshow(I_median7),axis on,title("7*7模板中值滤波");

subplot(326);imshow(I_median9),axis on,title("9*9模板中值滤波");

输出结果截图:

数字图像处理实验报告

(5)读取一张彩色图像并转换为灰度图,利用im2bw函数转换为“二值图像”,分别使用sobel算子及Laplacian算子进行锐化,在相同figure中输出,标题分别为“原图”、“二值图像”、“sobel算子锐化”、“拉普拉斯算子锐化”。

提示:H=fspecail (‘soble’); J=filter2(H,I1);

代码:

% 读取一张彩色图像并转换为灰度图

clc;clear;clear all;

img = imread('V.jpg');

gray_img = rgb2gray(img);

% 利用im2bw函数转换为“二值图像”

bw_img = im2bw(gray_img);

% 使用sobel算子进行锐化

sobel_img = edge(bw_img, 'sobel');

% 使用Laplacian算子进行锐化

laplace_img = edge(bw_img, 'log');

% 在相同figure中输出结果

figure;

subplot(2,2,1);

imshow(img);

title('原图');

subplot(2,2,2);

imshow(gray_img);

title('灰度图');

subplot(2,2,3);

imshow(sobel_img);

title('Sobel算子锐化');

subplot(2,2,4);

imshow(laplace_img);

title('Laplacian算子锐化');

输出结果截图:

数字图像处理实验报告

实验三、图像在频率域上的处理方法

一、实验目的

  1. 了解图像频域处理的意义和手段;
  2. 熟悉离散傅里叶变换的基本性质;
  3. 熟练掌握图像傅里叶变换的方法及应用;
  4. 通过实验了解二维频谱的分布特点;
  5. 通过本实验掌握利用MATLAB的工具箱实现数字图像的频域处理,构建各式常见频率域滤波器,并熟悉其特点与应用场景。

二、实验环境

MATLAB 2014以上版本、Win 8\10\11 系统

三、实验原理

图像的频率是图像在平面空间上的梯度,是表征图像中图像变化剧烈程度的指标。例如,大面积的海洋在图像中是一片图像变化缓慢的区域,对应的频率值很低;而地表属性变换剧烈的边缘区域在图像中则是一片图像变化剧烈的区域,对应的频率值较高。频域滤波增强是利用图像变换方法将原来的图像空间中的图像以某种形式转换到其他空间中,然后利用该空间的特有性质方便地处理图像,最后再转换回原来的图像空间中,从而得到处理后的图像。图像的频率域处理图像处理中占有重要的地位,在图像的去噪、图像压缩、特征提取和图像识别方面发挥着重要的作用。

图像频率域采用MATLAB工具箱中的傅里叶变换函数、滤波函数等函数及其相应的语法格式图像进行处理;

在MATLAB 中,函数fft、fft2和fftn分别可以实现一维、二维和N维DFT 算法:而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT。fftshift 函数可以把傅里叶操作(fft,fft2,fftn)得到的结果中的零频率成分移到矩阵的中心,这样有利于观察频谱;

涉及函数:imread、figure、imshow、subplot、rgb2gray、log、abs、fft、fft2、fftshift、ifft2

四、实验内容

(1)新建一个m文件,从桌面示例图像文件夹中读取一张彩色图像,转换为灰度图,利用傅里叶变换函数fft2与fftshift显示图像的傅里叶变换频谱图,并在一个figure窗口同时展示,标题分别为“原图”、“灰度图”、“变换频谱”。

代码:

clc;clear;clear all;

I=imread('V.jpg');

figure

subplot(311),imshow(I),title("原图像")

GrayI=rgb2gray(I);

subplot(312),imshow(GrayI),title('灰度图像')

fft2(GrayI);

S=fftshift(fft2(GrayI));

subplot(313),imshow(log(abs(S)),[]),title('频谱')

输出结果截图:

数字图像处理实验报告

(2)读取一张彩色图像,转换为灰度图,使用fft2进行傅里叶变换,接着使用ifft2进行傅里叶逆变换,并在一个figure窗口同时展示,标题分别为“原图”、“灰度图”、“二维傅里叶变换”、“傅里叶逆变换”。观察变换前后图像,及对应图像矩阵是否与原图相同。

代码:

clc;clear;clear all;

% 读取彩色图像

rgb_img = imread('V.jpg');

% 转换为灰度图

gray_img = rgb2gray(rgb_img);

% 进行二维傅里叶变换

fft_img = fft2(gray_img);

% 进行傅里叶逆变换

ifft_img = ifft2(fft_img);

% 显示图像

figure;

subplot(2, 2, 1);

imshow(rgb_img);

title('原图');

subplot(2, 2, 2);

imshow(gray_img);

title('灰度图');

subplot(2, 2, 3);

imshow(abs(fftshift(fft_img)), []);

title('二维傅里叶变换');

subplot(2, 2, 4);

imshow(abs(ifft_img), []);

title('傅里叶逆变换');

输出结果截图:

数字图像处理实验报告

(3)读取一张彩色图像并转换为灰度图,接着对图像进行傅里叶正反变换,对比变换前后是否相同。同一个figure窗口中输出,标题分别为“原图”、“傅里叶变换”,“傅里叶反变换”。

代码:

clc;clear;clear all;

I=imread('V.jpg');

figure

subplot(311),imshow(I),title("原图像")

A=rgb2gray(I);

B=fft2(A);

C=fftshift(B);

subplot(312),imshow(log(abs(C)),[]),title('傅里叶变换')

D=ifft2(B);

subplot(313),imshow(uint8(abs(D))),title('傅里叶反变换')

输出结果截图:

数字图像处理实验报告

(4)读取一张彩色图像并转换为灰度图,使用fft函数及fft2函数验证二维离散傅里叶变换可分解为两个一维离散傅里叶变换(先行变换,后列变换)在相同figure中输出,标题分别为“原图”、“fft2实现变换”、“fft实现变换”。

代码:

clc;clear;clear all;

% 读取彩色图像并转换为灰度图

img = imread('V.jpg');

gray_img = rgb2gray(img);

% 在同一figure中输出原图

subplot(1,3,1);

imshow(gray_img);

title('原图');

% 使用fft2函数进行二维离散傅里叶变换

fft2_img = fft2(gray_img);

% 在同一figure中输出使用fft2函数实现的变换结果

subplot(1,3,2);

imshow(log(abs(fftshift(fft2_img))),[]);

title('fft2实现变换');

% 使用fft函数进行一维离散傅里叶变换(先行变换)

fft_row_img = fft(gray_img,[],1);

% 使用fft函数进行一维离散傅里叶变换(后列变换)

fft_col_img = fft(fft_row_img,[],2);

% 在同一figure中输出使用fft函数实现的变换结果

subplot(1,3,3);

imshow(log(abs(fftshift(fft_col_img))),[]);

title('fft实现变换');

输出结果截图:

数字图像处理实验报告

(5)读取一张彩色图像并转换为灰度图,使用imnoise函数加入高斯白噪声,绘制加噪后图像,使用fft函数绘制加噪后图像傅里叶频谱图。接着设计一个截止频率D0=M*10(其中M=学号末位数)的理想低通滤波器(ILPF)对图像进行滤波处理,绘制滤波后噪声图及滤波后的傅里叶频谱图。上述结果在同一figure中显示,标题分别为“加噪后图像”、“噪声fft”、“滤波后噪声图”、“滤波后噪声图fft”。

提示:

①对于大小为M*N的图像,频率点(u, v)与频率中心的距离为D(u, v),其表达式为:

数字图像处理实验报告

②理想低通滤波器的产生公式为:

数字图像处理实验报告

代码:

clc;clear;clear all;

% 读取彩色图像并转换为灰度图

rgb_img = imread('V.jpg');

gray_img = rgb2gray(rgb_img);

% 加入高斯白噪声

noisy_img = imnoise(gray_img, 'gaussian');

% 绘制加噪后图像

figure;

subplot(2,2,1);

imshow(noisy_img);

title('加噪后图像');

% 使用FFT函数绘制加噪后图像傅里叶频谱图

noisy_fft = fft2(noisy_img);

noisy_fft_shifted = fftshift(noisy_fft);

noisy_fft_mag = abs(noisy_fft_shifted);

subplot(2,2,2);

imshow(log(1+noisy_fft_mag), []);

title('噪声fft');

% 设计理想低通滤波器(ILPF)对图像进行滤波处理

M = 2; % 学号末位数是0(更换为2)

D0 = M*10;

[height, width] = size(noisy_img);

[x, y] = meshgrid(1:width, 1:height);

center_x = floor(width/2)+1;

center_y = floor(height/2)+1;

d = sqrt((x-center_x).^2 + (y-center_y).^2); % 欧几里得距离

H_ILPF = double(d<=D0); % 理想低通滤波器

% 对图像进行滤波处理

noisy_fft_filtered_shifted = noisy_fft_shifted .* H_ILPF;

noisy_filtered = real(ifft2(ifftshift(noisy_fft_filtered_shifted)));

% 绘制滤波后噪声图及滤波后的傅里叶频谱图

subplot(2,2,3);

imshow(noisy_filtered, []);

title('滤波后噪声图');

filtered_fft = fft2(noisy_filtered);

filtered_fft_shifted = fftshift(filtered_fft);

filtered_fft_mag = abs(filtered_fft_shifted);

subplot(2,2,4);

imshow(log(1+filtered_fft_mag), []);

title('滤波后噪声图fft');

输出结果截图:

数字图像处理实验报告文章来源地址https://www.toymoban.com/news/detail-480881.html

到了这里,关于数字图像处理实验报告的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数字图像处理:实验六 图像分割

    数据分割是由图像处理到图像分析的关键步骤,是图像识别和计算机视觉至关重要的预处理,图像分割后提取的目标可用于图像识别、特征提取,图像搜索等领域。图像分割的基本策略主要是基于图像灰度值的两个特性,即灰度的不连续性和灰度的相似性,因此图像分割方法

    2024年02月06日
    浏览(52)
  • 数字图像处理:实验三 图像增强

    图像增强是数字图像处理过程中常采用的一种方法。为了改善视觉效果或便于人和机器对图像的理解和分析,根据图像的特点或存在的问题采取的改善方法或加强特征的措施称为图像增强。图像增强处理是改变图像视觉效果的手段,增强后的图像便于对它的后续处理。图像增

    2024年02月04日
    浏览(50)
  • 数字图像处理实验四--图像变换

    (图像变换) 实验内容: 对图像lena、cameraman和face进行傅里叶变换,观察图像能量在频谱图中的分布情况。 利用Matlab生成下列图像,并对其进行旋转30度、90度和120度,然后对他们分别进行傅里叶变换。 对图像lena、cameraman和face用DCT变换进行图像压缩,舍掉的变换系数分别小

    2024年04月14日
    浏览(66)
  • 《数字图像处理-OpenCV/Python》连载(2)目录

    本书京东优惠购书链接:https://item.jd.com/14098452.html 本书CSDN独家连载专栏:https://blog.csdn.net/youcans/category_12418787.html 第1章 图像的基本操作 3 1.1 图像的读取与保存 3 1.1.1 图像的读取 3 1.1.2 图像的保存 4 1.2 图像的显示 6 1.3 基于Matplotlib显示图像 7 1.4 视频文件的读取与保存 9 1.5 多

    2024年02月06日
    浏览(73)
  • 数字信号与图像处理实验三:图像处理基础与图像变换

    ​ 通过本实验加深对数字图像的理解,熟悉MATLAB中的有关函数;应用DCT对图像进行变换;熟悉图像常见的统计指标,实现图像几何变换的基本方法。 ​ 选择两幅图像,读入图像并显示,同时使用Matlab计算图像的大小,灰度平均值、协方差矩阵、灰度标准差和相关系数。 DC

    2024年02月04日
    浏览(61)
  • 数字图像处理实验之Matlab对图像的基本处理

    1、提取Lena图像的左半上角部分,与原始Lena图像在同一个figure中显示,并做适当命名 效果图 2、利用 imnoise , 对原始Lena图像叠加高斯噪声,产生4幅、14幅、140幅的含噪图像。对这些含噪图像采用 相加  运算,来验证、比较图像相加消除叠加性噪声的效果。将原始图像、1幅噪

    2024年02月03日
    浏览(63)
  • 数字图像处理之matlab实验(五):形态学图像处理

    常见的形态学处理包括腐蚀、膨胀、开运算、闭运算。不同的操作有不同的作用,同样的操作在不同类型的图片上也有不同效果,具体效果如下表格所示。要求熟练掌握对二值图像的形态学处理。 不同操作对不同类型图像处理效果 一、对二值图像进行处理 1、结构元素 在开

    2024年02月04日
    浏览(64)
  • 【数字图像处理】实验三 图像分割(MATLAB实现)

    目录 一、实验意义及目的 二、实验内容 三、Matlab 相关函数介绍 四、算法原理 五、参考代码及扩展代码流程图 (1)参考代码流程图 (2)扩展代码流程图 六、参考代码 七、实验要求 (1)尝试不同的阈值选择方法,实现灰度图像二值化 (2)变换参数实现形态学滤波,查看滤波

    2024年02月05日
    浏览(50)
  • 【数字图像处理】实验(2)——图像增强(MATLAB实现)

    (1)进一步掌握图像处理工具Matlab,熟悉基于Matlab的图像处理函数。 (2)掌握各种图像增强方法。 1.打开一幅彩色图像Image1,使用Matlab图像处理函数,对其进行下列变换: (1)将Image1灰度化为gray,统计并显示其灰度直方图; (2)对gray进行分段线性变换; (3)对gray进行

    2023年04月23日
    浏览(56)
  • 【数字图像处理】实验二 图像增强(MATLAB实现)

    目录 一、实验意义及目的 二、实验内容 三、Matlab 相关函数介绍 四、算法原理 五、参考代码及扩展代码流程图  (1)参考代码流程图 (2)扩展代码流程图 六、参考代码 七、实验要求 (1)对以上处理变换参数,查看处理效果; (2)更改伪彩色增强方法为热金属编码或彩

    2023年04月12日
    浏览(85)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包