第二章 数据处理篇:transforms

这篇具有很好参考价值的文章主要介绍了第二章 数据处理篇:transforms。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

教程参考:
https://pytorch.org/tutorials/
https://github.com/TingsongYu/PyTorch_Tutorial
https://github.com/yunjey/pytorch-tutorial
详细的transform的使用样例可以参考:ILLUSTRATION OF TRANSFORMS


为什么要使用transforms

你得到的原始数据,可能并不是你期望的用于模型训练的数据的形式,比如数据中图像的大小不同、数据的格式不对。这时就需要你对数据进行统一的处理,torchvision.transforms就提供了一些帮助我们进行数据处理的简易手段。

在pytorch官方教程最开始,给了这样一个示例。
示例中使用自带的datasets:FashionMNIST,为了便于训练,对于原始数据和label分别使用了transform的方法。
对于数据本身,使用的方法是 ToTensor(),
对于标签,使用的方法是one-hot。
在后面的部分我们会详细介绍一下不同的transform方法。

import torch
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda

ds = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
    target_transform=Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), value=1))
)

torchvision.transforms中提供了多个方法,并且这些方法可以使用Compose进行连接,并按顺序执行。其中的大部分transforms方法都可以接受PIL图像和tensor图像作为输入,当然也有一部分在输入上有限制。

transforms方法举例

我们使用opencv读入一张cifar10中的图片作为例子,并将其通道从BGR转为RGB通道。使用opencv读入的图片,为numpy.ndarray格式。下图是我们的例子,一个类别为airplane的图像。
第二章 数据处理篇:transforms

ToTensor()

ToTensor()方法可以把一个PIL图像或者numpy.ndarray数据转成FloatTensor的形式,并且将图像规范化到0和1之间。
更细致地来说,它会把一共PIL图像,或者范围在[0,255]的大小为(HxWxC)的numpy.ndarray转成一个大小为(CxHxW)的范围在[0.0,1.0]的floattensor。ndarray数据的dtype必须是np.uint8。
第二章 数据处理篇:transforms

使用ToTensor()方法对我们的img进行处理,可以看到它原本为uint8的ndarray,变成了float32的tensor,它的形状从(32, 32, 3)转为(3, 32, 32),并且它的像素值的大小从51 到 255被转变为0.2到1.0。

我们也可以将图像读取为PIL Image的形式,并使用同样的方法处理。得到的结果是完全相同的。
第二章 数据处理篇:transforms

Normalize()

Normalize()方法可以把一个tensor数据进行归一化/标准化处理。在使用时,需要你提供数据的均值和方差,Normalize()会对输入数据的每一个通道进行归一化处理。使用的方法是:
o u t p u t [ c h a n n e l ] = i n p u t [ c h a n n e l ] − m e a n [ c h a n n e l ] s t d [ c h a n n e l ] output[channel] = \frac{input[channel] - mean[channel]}{std[channel]} output[channel]=std[channel]input[channel]mean[channel]
要注意它的输入是tensor格式,所以一般把它放到ToTensor()后面使用。
使用之后数据的大小类型都没有发生变化,但是值的范围发生了变化。
第二章 数据处理篇:transforms

Geometry

主要对图像的大小形状等进行调整,没有改变图像的颜色信息。

transforms.Resize()

torchvision.transforms.Resize(size, interpolation=InterpolationMode.BILINEAR, max_size=None, antialias='warn')

Resize()的输入可以是PIL图像也可以是tensor。给定一张图片,Resize()会对图像的长款进行缩放,把它变成我们期望的大小。

输入的size可以是一个整数也可以是一个序列[h,w],如果是单个整数的话,则被认为是期望的短边的大小,长边会按比例缩放。
输入的interpolation是一个插值方法。
输入max_size定义了一个目标图像的长边大小的上限,如果超过上限,则会重新resize。

transforms.CenterCrop( size )

CenterCrop()的输入可以是PIL图像也可以是Tensor。给定一张图片,CenterCrop()会从图中心开始对图像进行裁剪,只保留我们期望的大小。假如输入的图像大小比我们期望的size小,则会在图像周围进行补0操作。
下图的第一张图为32x32大小的原图,第二张图为10x10的crop结果,第三张图为40x40的crop结果。
第二章 数据处理篇:transforms

transforms.RandomCrop(size)

torchvision.transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant')

RandomCrop()的输入可以是PIL图像也可以是Tensor。给定一张图像,RandomCrop()会在随机位置对图像进行裁剪

输入的size可以是一个整数也可以是一个序列[h,w],如果是单个整数的话,认为crop的图像的大小是[size,size]。
输入的padding可以是一个整数也可以是一个序列,如果是一个整数,会使用这个整数对所有的边进行padding。如果是一个长度为2的序列,则会分别用来扩充left/right和top/bottom。如果是一个长度为4的整数,则分别对应了每一个边。
输入的padding_mode有四个选项,分别是constant(常数填充), edge(边缘填充),reflect(镜像填充),symmetric (对称填充)。
镜像填充在填充时以边界为镜面形成镜像。对称填充则是使用对称值。具体来说,对[1,2]在左右进行一个像素大小的填充,使用镜像填充得到的结果为[2,1,2,1],使用对称填充得到的结果为[1,1,2,2]。
下图的第一张图为32x32大小的原图,第二张和第三张为10x10的crop结果,因为randomcrop,所以两个图的结果不一样。
第二章 数据处理篇:transforms

transforms.RandomResizedCrop()

torchvision.transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=InterpolationMode.BILINEAR, antialias: Optional[Union[str, bool]] = 'warn')

RandomResizedCrop()的输入可以是PIL图像也可以是Tensor。给定一张图像,RandomResizedCrop()会在随机位置对图像进行随机大小的裁剪,并把它resize成期望的大小。

输入的size可以是一个整数也可以是一个序列[h,w],如果是单个整数的话,认为crop的图像的大小是[size,size]。
输入的scale要求是一个tuple,定义了crop的区域大小的下限和上限,它使用的是一个基于原图大小的比例值。
输入的ratio要求是一个tuple,定义了crop区域的长宽比的下限和上限。
scale和ratio的区别是,scale代表了取长宽的基准,ratio是在这个基准上参考的长宽比。
输入的interpolation要求是一个插值方法,在RandomResizedCrop()中没有padding,因为随即裁剪得到的图像会使用插值方法resize到期望的大小。
下图的第一张图为32x32大小的原图,第二张和第三张为40x40的crop结。
第二章 数据处理篇:transforms

transforms.FiveCrop(size)

FiveCrop()的输入可以是PIL图像也可以是Tensor,给定一张图像,获得图像四个角和中心的crop结果。
要注意,FiveCrop()返回的结果是五张图,而不是一张图。
对于一个大小为(b, c, h, w)的tensor的输入,它返回的结果为(b, ncrop, c, size_h, size_w)。
第二章 数据处理篇:transforms

transforms.TenCrop(size, vertical_flip = False)

TenCrop()和FiveCrop()类型,只不过在其基础上增加了翻转。默认是使用水平翻转,如果vertical_clip设为True,就会使用垂直翻转。
第二章 数据处理篇:transforms

RandomHorizontalFlip and RandomVerticalFlip

torchvision.transforms.RandomHorizontalFlip(p=0.5)

torchvision.transforms.RandomVerticalFlip(p=0.5)

两个函数的输入可以是PIL图像也可以是tensor。
输入P代表反转图像的概率,默认为0.5,即有50%的概率该图像会被翻转。

RandomRotation()

torchvision.transforms.RandomRotation(degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=0)

RandomRotation()的输入可以是PIL图像也可以是tensor。

输入degrees可以是一个整数或者一个序列。如果是整数则代表旋转的范围是 - degrees,+ degrees,如果是一组数则分别代表了最小值和最大值。
输入interpolation是一个插值方法。
输入expand代表是否要对图片进行扩展,经过旋转后图片的形状发生变化,如果expand = False,则会默认保持输出和输入图像大小一致。
输入center代表旋转中心,默认是图片中心。
输入fill代表填充图片边界外 区域所用的数值,默认是0。

第一行的是expand = False时随机旋转的结果,输出图像和输入图像保持一样的大小。第二行是expand = True时的结果,输出图像的大小发生了变化。
第二章 数据处理篇:transforms

Color

主要对图像的颜色信息进行调整,没有改变图像的形状大小。

ColorJitter()

torchvision.transforms.ColorJitter(brightness: Union[float, Tuple[float, float]] = 0, contrast: Union[float, Tuple[float, float]] = 0, saturation: Union[float, Tuple[float, float]] = 0, hue: Union[float, Tuple[float, float]] = 0)

ColorJitter()的输入可以是PIL图像也可以是tensor。假如输入的是tensor,期望tensor的数据格式为[…, 1 or 3, H, W]。ColorJitter()可以随即调整图像的亮度,对比度,饱和度,色调等。
可以看到使用ColorJitter()后只有图像的颜色发生了变化,几何信息没有受到影响。
第二章 数据处理篇:transforms

RandomGrayscale(p = 0.1)

RandomGrayscale()的输入可以是PIL图像是也可以是tensor,但是要求tensor的通道数是3。RandomGrayscale()有p的概率将一个图像转换为灰度图。

GaussianBlur(kernel_size, sigma=(0.1, 2.0))

GaussianBlur()的输入可以是PIL图像也可以是tensor。给定一张图像,它可以随机使用高斯模糊来把图像变得模糊。

输入kernel_size是一个整数或者序列,表示高斯核的大小。
输入sigma是代表标准差的上下界。

下图为kernel_size = 5时的结果。
第二章 数据处理篇:transforms

RandomInvert(p=0.5)

RandomInvert()的输入可以是PIL图像也可以是tensor。给定一张图像,RandomInvert()有p的概率翻转图像的颜色。
第二章 数据处理篇:transforms

Composition

主要是不同的transforms的组合方式。

Compose(transforms)

Compose()将多个transforms方法组合在一起,在使用时会按顺序进行。
如以下例子,首先将图片进行CenterCrop,然后转变为tensor格式,最后又将图像的dtype变为float。

>>> transforms.Compose([
>>>     transforms.CenterCrop(10),
>>>     transforms.PILToTensor(),
>>>     transforms.ConvertImageDtype(torch.float),
>>> ])

Compose()方法可以用torch.nn.Sequential()替代。

RandomApply(transforms, p)

RandomApply()将多个transforms方法组合在一起,在使用时按照概率p决定是否执行,要么全都执行,全么全都不执行。

RandomChoice(transforms,p)

RandomChoice() 参考random.choices方法,从多个transforms方法中选择一个使用。

RandomOrder(transforms)

RandomOrder()将多个transforms方法而在一起,在使用时会按随机顺序进行。

Miscellaneous

RandomErasing()

torchvision.transforms.RandomErasing(p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False)

RandomErasing()方法的输入必须是tensor,这个函数不支持PIL图像。给定一个图像,RandomErasing()方法会随机选择图像中的一块并擦除他的元素值。

输入p代表执行擦除操作的概率。
输入scale代表擦除区域占输入图像的范围。
输入ratio代表擦除区域的长宽比。
输入value代表擦除后用来替换的值。
输入inplace代表是否在原图像上进行操作。

因为输入必须是tensor,所以只能放在ToTensor()后面使用。

>>> transform = transforms.Compose([
>>>   transforms.RandomHorizontalFlip(),
>>>   transforms.PILToTensor(),
>>>   transforms.ConvertImageDtype(torch.float),
>>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
>>>   transforms.RandomErasing(),
>>> ])

Lambda(lambda)

Lambda()就是在最开始的例子中,target_transform使用的方法。

该例子定义了一个one-hot编码的函数,对于输入的整数类型的图像类别,可以将其转为特殊的one-hot编码格式

target_transform=Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), value=1))

Auto-Augmentation

pytorch 提供了一些policy供使用者选择,比如 IMAGENET, CIFAR10 and SVHN. 依靠这些policy,使用者可以直接套用前人的augmentation方法,而不需要自己编写代码。

  • AutoAugment(policy) 使用你给定的policy执行augmentation方法。
  • RandAugment() https://arxiv.org/abs/1909.13719
  • TrivialAugmentWide() https://arxiv.org/abs/2103.10158
  • AugMix() https://arxiv.org/abs/1912.02781

之后有时间的话再介绍一下别的augmentation常用的包。文章来源地址https://www.toymoban.com/news/detail-480929.html

到了这里,关于第二章 数据处理篇:transforms的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【RabbitMQ教程】第二章 —— RabbitMQ - 简单案例

                                                                       💧 【 R a b b i t M Q 教程】第二章—— R a b b i t M Q − 简单案例 color{#FF1493}{【RabbitMQ教程】第二章 —— RabbitMQ - 简单案例} 【 R abbi tMQ 教程】第二章 —— R abbi tMQ − 简单案例

    2024年02月08日
    浏览(40)
  • [第二章—Spring MVC的高级技术] 2.3 处理异常

    各位小猿,程序员小猿开发笔记,希望大家共同进步。 引言 我是谁——异常处理。 来自那——所有功能正常运行,但出现错误 怎么办——如何处理异常和响应客户端 我是谁——Spring框架中的一个注解 用在哪——应用在控制器类或方法上 什么用——用于在控制器方法中指定

    2024年01月22日
    浏览(48)
  • rust教程 第二章 —— rust基础语法详解

    首先要讲解的便是变量,如果你有其它语言基础,相信还是比较好理解的 我们的电脑中,很重要的一个性能指标便是内存大小,而所有的程序便是运行在内存中的: 而变量,就是在这个内存中,申请一块属于自己可以调度的内存块,有了这块内存,我们就能用它来计算、存

    2023年04月25日
    浏览(47)
  • 教程 | VeriStand硬件在环仿真测试第二章

           在上一章节中我们已经安装好了MATLAB和VeriStand软件,并且配置了MATLAB和VeriStand编译器的联动,这样就完成了VeriStand硬件在环仿真测试中软件环境的搭建。      本文承接上一章中的内容,在完成了软件环境的配置后,我们就可以开始搭建MATLAB和VeriStand硬件在环仿真系

    2023年04月22日
    浏览(42)
  • 【STM32教程】第二章 通用输入输出口GPIO

    资料下载链接: 链接:https://pan.baidu.com/s/1hsIibEmsB91xFclJd-YTYA?pwd=jauj  提取码:jauj    GPIO(General Purpose Input Output)意思是通用输入输出口可配置为8种输入输出模式,其引脚电平:0V~3.3V,部分引脚可容忍5V(容忍5V的意思是可以在这个端口输入5V,相当于输入一个高电平,而输

    2024年02月09日
    浏览(47)
  • 《EDA技术实用教程(第六版(黄继业, 潘松))》学习笔记——第二章

    PLD(Programmable Logic Device):可编程逻辑器件 RAM(Random Access Memory):随机访问存储器 DRAM(Dynamic Random Access Memory):动态随机访问存储器 SRAM(Static Random Access Memory):静态随机访问存储器 ROM(Read-Only Memory):只读存储器 PROM(Programmable Read-Only Memory):可编程只读存储器

    2024年01月18日
    浏览(44)
  • 第二章-数据传输安全

    VPN虚拟专用网 :在ISP运营商公用网络中搭建专用的安全数据通道 VPN :隧道 – 封装技术 常见VPN :IPSec VPN、MPLS VPN、GRE VPN、SangFor VPN、PPTP VPN、L2TP VPN / L2F VPN 1)按应用场景分(业务类型) Client-LAN VPN(access VPN)客户端到网络:PPTP VPN、L2TP VPN / L2F VPN、SSL VPN、IPSec VPN LAN-LAN V

    2024年01月23日
    浏览(48)
  • Oracle-第二章-数据类型

    1.1四则运算(加减乘除) 1.2取余(mod函数) 1.3截取(trunc函数,round函数-四舍五入-常用) 1.4值(abs函数) 1.5乘方(power函数) 1.6平方根(sqrt函数) 1.7向上取整(ceil函数) 1.8向下取整(floor函数) 1.9伪随机数(dbms_random.value函数-在oracle中很少用) 1.10函数组合用法 1.11其他

    2024年02月08日
    浏览(43)
  • 【第二章:数据的表示和运算】

    探讨的两大主题:一步步递进 那么现在就需要探究 数据如何以2进制的形式在计算机中表示的呢?? 那么还有就是计算机如何进行数据的算术和逻辑运算的?? 我们平常使用的是10进制的数据,然而计算机能够识别的是2进制的01序列串。 主要是权重的不同。一方面符号表示

    2024年02月04日
    浏览(42)
  • 大数据之路-日志采集(第二章)

    阿里巴巴的日志采集体系方案包括两大体系: Ap us.JS Web(基于浏览器)日志采集技术方案: UserTrack APP 端(无线客户端 日志采集技术方案。 本章从浏览器的页面日志采集、无线客户端的日志采集以及我们遇到的日志采集挑战三块内容来阐述间里巴巴的日志采集经验。 浏览器

    2024年01月25日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包