量子机器学习Variational Quantum Classifier (VQC)简介

这篇具有很好参考价值的文章主要介绍了量子机器学习Variational Quantum Classifier (VQC)简介。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

变分量子分类器(Variational Quantum Classifier,简称VQC)是一种利用量子计算技术进行分类任务的机器学习算法。它属于量子机器学习算法家族,旨在利用量子计算机的计算能力,潜在地提升经典机器学习方法的性能。

VQC的基本思想是使用一个量子电路,也称为变分量子电路,将输入数据编码并映射到量子态上。然后,使用量子门和测量操作对这些量子态进行操作,以提取与分类任务相关的特征。最后,处理测量结果,并将其用于为输入数据分配类别标签。

量子机器学习Variational Quantum Classifier (VQC)简介

VQC将经典优化技术与量子计算相结合。在训练过程中,将变分量子电路在量子计算机或模拟器上重复执行,并将结果与训练数据的真实标签进行比较。通过迭代地调整变分量子电路的参数,使其在预测标签与真实标签之间的差异上最小化代价函数。这个优化过程旨在找到最优的量子电路配置,从而最大化分类准确性。虽然看起来很简单,但这种混合计算体系结构存在很多的挑战。

量子机器学习Variational Quantum Classifier (VQC)简介

特征映射是第一阶段,其中数据必须编码为量子位。有许多编码方法,因为特征映射是从一个向量空间到另一个向量空间的数学变换。所以研究如何为每个问题找到最佳映射,就是一个待研究的问题

有了映射,还要设计一个量子电路作为模型,这是第二阶段。在这里我们可以随心所愿地发挥创意,但必须考虑到同样的旧规则仍然很重要:对于简单的问题,不要使用太多的参数来避免过拟合,也不能使用太少的参数来避免偏差,并且由于我们正在使用量子计算,为了从量子计算范式中获得最佳效果,必须与叠加(superposition )和纠缠(entanglement)一起工作。

并且量子电路是线性变换,我们还需要对其输出进行处理。比如非线性化的激活。

数据集和特征

这里我们将基于泰坦尼克号数据集设计一个分类器,我们的数据集有以下特征:

  • PassengerID
  • Passenger name
  • Class (First, second or third)
  • Gender
  • Age
  • SibSP (siblings and/or spouses aboard)
  • Parch (parents or children aboard)
  • Ticket
  • Fare
  • Cabin
  • Embarked
  • Survived

我们要构建一个根据乘客的特征预测乘客是否幸存的分类器。所以我们只选择几个变量作为示例:

  • is_child (if age <12)
  • is_class1 (if person is in the first class)
  • is_class2
  • is_female

由于只有四个变量,所以我们使用将使用Basis Embedding。我们只需将经典位转换为等效量子位。比如我们的四个变量是1010,这将被转换为|1010>。

模型

我们的模型是可参数化量子电路。这个电路必须具有一定程度的叠加和纠缠,这样才能证明使用量子组件是合理的,我们的模型如下:

量子机器学习Variational Quantum Classifier (VQC)简介

这个模型可能看起来很复杂,但他的想法相当简单。 这是一个双层电路,因为核心结构重复了 2 次。 首先,我们为每个量子位绕 Z、Y 和 Z 轴旋转,这里的想法是分别在每个量子位上插入某种程度的叠加。 这些旋转是参数化的,并且在算法的每次交互中,这些参数将由经典计算机更新。 然后就是 Y 轴和 Z 轴上的旋转,因为量子位的矢量空间是一个球体(布洛赫球体)。 RZ 只会改变量子比特相位,RY 会影响量子比特与 |0> 和 |1> 的接近程度。

每对量子位之间有四个受控非 (CNOT) 状态,这是一个量子门,根据另一个量子位(分别为目标和控制)的状态反转一个量子位状态。 也就是说这个门纠缠了我们电路中的所有量子位,现在所有状态都纠缠了。 在第二层中,我们应用了一组新的旋转,这不仅仅是第一层的逻辑重复,因为现在所有状态都纠缠在一起,这意味着旋转第一个量子比特也会影响其他量子比特! 最后我们有了一组新的 CNOT 门。

这是对我们上面模型的非常简单的解释,下面代码会让这些内容变得更清晰。

优化器

我使用的是Adam Optimizer,但是这个优化器是经过特殊处理的,我们直接使用pennylane 库。

代码实现

这里我们直接使用Pennylane和sklearn实现代码。

 importpennylaneasqml
 frompennylaneimportnumpyasnp
 frompennylane.optimizeimportAdamOptimizer
 
 fromsklearn.model_selectionimporttrain_test_split
 importpandasaspd
 
 fromsklearn.metricsimportaccuracy_score
 fromsklearn.metricsimportf1_score
 fromsklearn.metricsimportprecision_score
 fromsklearn.metricsimportrecall_score
 
 importmath
 
 num_qubits=4
 num_layers=2
 
 dev=qml.device("default.qubit", wires=num_qubits)
 
 # quantum circuit functions
 defstatepreparation(x):
     qml.BasisEmbedding(x, wires=range(0, num_qubits))
 
 deflayer(W):
 
     qml.Rot(W[0, 0], W[0, 1], W[0, 2], wires=0)
     qml.Rot(W[1, 0], W[1, 1], W[1, 2], wires=1)
     qml.Rot(W[2, 0], W[2, 1], W[2, 2], wires=2)
     qml.Rot(W[3, 0], W[3, 1], W[3, 2], wires=3)
 
     qml.CNOT(wires=[0, 1])
     qml.CNOT(wires=[1, 2])
     qml.CNOT(wires=[2, 3])
     qml.CNOT(wires=[3, 0])
 
 @qml.qnode(dev, interface="autograd")
 defcircuit(weights, x):
 
     statepreparation(x)
 
     forWinweights:
         layer(W)
 
     returnqml.expval(qml.PauliZ(0))
 
 defvariational_classifier(weights, bias, x):
     returncircuit(weights, x) +bias
 
 defsquare_loss(labels, predictions):
     loss=0
     forl, pinzip(labels, predictions):
         loss=loss+ (l-p) **2
 
     loss=loss/len(labels)
     returnloss
 
 defaccuracy(labels, predictions):
 
     loss=0
     forl, pinzip(labels, predictions):
         ifabs(l-p) <1e-5:
             loss=loss+1
     loss=loss/len(labels)
 
     returnloss
 
 defcost(weights, bias, X, Y):
     predictions= [variational_classifier(weights, bias, x) forxinX]
     returnsquare_loss(Y, predictions)
 
 # preparaing data
 df_train=pd.read_csv('train.csv')
 
 df_train['Pclass'] =df_train['Pclass'].astype(str)
 
 df_train=pd.concat([df_train, pd.get_dummies(df_train[['Pclass', 'Sex', 'Embarked']])], axis=1)
 
 # I will fill missings with the median
 df_train['Age'] =df_train['Age'].fillna(df_train['Age'].median())
 
 df_train['is_child'] =df_train['Age'].map(lambdax: 1ifx<12else0)
 cols_model= ['is_child', 'Pclass_1', 'Pclass_2', 'Sex_female']
 
 X_train, X_test, y_train, y_test=train_test_split(df_train[cols_model], df_train['Survived'], test_size=0.10, random_state=42, stratify=df_train['Survived'])
 
 X_train=np.array(X_train.values, requires_grad=False)
 Y_train=np.array(y_train.values*2-np.ones(len(y_train)), requires_grad=False)
 
 # setting init params
 np.random.seed(0)
 weights_init=0.01*np.random.randn(num_layers, num_qubits, 3, requires_grad=True)
 bias_init=np.array(0.0, requires_grad=True)
 
 opt=AdamOptimizer(0.125)
 num_it=70
 batch_size=math.floor(len(X_train)/num_it)
 
 weights=weights_init
 bias=bias_init
 foritinrange(num_it):
 
     # Update the weights by one optimizer step
     batch_index=np.random.randint(0, len(X_train), (batch_size,))
     X_batch=X_train[batch_index]
     Y_batch=Y_train[batch_index]
     weights, bias, _, _=opt.step(cost, weights, bias, X_batch, Y_batch)
 
     # Compute accuracy
     predictions= [np.sign(variational_classifier(weights, bias, x)) forxinX_train]
     acc=accuracy(Y_train, predictions)
 
     print(
         "Iter: {:5d} | Cost: {:0.7f} | Accuracy: {:0.7f} ".format(
             it+1, cost(weights, bias, X_train, Y_train), acc
         )
     )
 
 X_test=np.array(X_test.values, requires_grad=False)
 Y_test=np.array(y_test.values*2-np.ones(len(y_test)), requires_grad=False)
 
 predictions= [np.sign(variational_classifier(weights, bias, x)) forxinX_test]
 
 accuracy_score(Y_test, predictions)
 precision_score(Y_test, predictions)
 recall_score(Y_test, predictions)
 f1_score(Y_test, predictions, average='macro')

最后得到的结果如下:

 Accuracy: 78.89%
 Precision: 76.67%
 Recall: 65.71%
 F1: 77.12%

为了比较,我们使用经典的逻辑回归作为对比,

 Accuracy: 75.56%
 Precision: 69.70%
 Recall: 65.71%
 F1: 74.00%

可以看到VQC比逻辑回归模型稍微好一点!这并不意味着VQC一定更好,因为只是这个特定的模型和特定的优化过程表现得更好。但这篇文章的主要还是是展示构建一个量子分类器是很简单的,并且是有效的。

总结

VQC算法需要同时利用经典资源和量子资源。经典部分处理优化和参数更新,而量子部分在量子态上执行计算。VQC的性能和潜在优势取决于诸如分类问题的复杂性、量子硬件的质量以及合适的量子特征映射和量子门的可用性等因素。

最重要的是:量子机器学习领域仍处于早期阶段,VQC的实际实现和有效性目前受到构建大规模、纠错的量子计算机的挑战所限制。但是该领域的研究正在不断进行,量子硬件和算法的进步可能会在未来带来更强大和高效的量子分类器。

https://avoid.overfit.cn/post/5c39cdddb6cb4111ab9e776f26d89ce5文章来源地址https://www.toymoban.com/news/detail-481039.html

到了这里,关于量子机器学习Variational Quantum Classifier (VQC)简介的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • AI、大数据、量子计算、区块链、机器学习、深度学习、图像识别、NLP、搜索引擎、云计算、物联网、AR/VR、智能交通、智能驾驶等多个领域的基础技术到应用产品介绍

    作者:禅与计算机程序设计艺术 本文综述 AI、大数据、量子计算、区块链、机器学习、深度学习、图像识别、NLP、搜索引擎、云计算、物联网、AR/VR、智能交通、智能驾驶等多个领域,涵盖了从基础技术到应用产品的方方面面,大胆探索了未来数字化转型的机遇和挑战。 人工

    2024年02月11日
    浏览(55)
  • 【机器学习】强化学习 (一)强化学习简介

    一、强化学习简介 1.1 问题定义 1.2 马尔可夫决策过程 举例说明马尔可夫决策过程 例1: 例2: 执行动作的策略 强化学习的目标是让智能体通过不断尝试,找到最优的策略(policy),即在每个状态下选择什么动作,以最大化累积的奖励。强化学习的常见算法有: Q学习(Q-lea

    2024年01月20日
    浏览(44)
  • 【零基础学机器学习 3】机器学习类型简介:监督学习 - 无监督学习 - 强化学习

    👨‍💻 作者简介:程序员半夏 , 一名全栈程序员,擅长使用各种编程语言和框架,如JavaScript、React、Node.js、Java、Python、Django、MySQL等.专注于大前端与后端的硬核干货分享,同时是一个随缘更新的UP主. 你可以在各个平台找到我! 🏆 本文收录于专栏: 零基础学机器学习 🔥 专栏

    2024年02月06日
    浏览(44)
  • 机器学习(一)—— 简介

    参考书籍《机器学习和深度学习:原理、算法、实战》 线型回归 逻辑回归 决策树 随机森林 梯度提升机 人工神经网络 卷积神经网络 循环神经网络 贝叶斯技术 支持向量机 进化方法 马尔可夫逻辑网络 隐马尔可夫模型 生成对抗网络 机器学习也被称为增强分析,被认为是人工

    2024年01月22日
    浏览(26)
  • 2、机器学习简介及其分类

    机器学习是指让机器从数据中自动学习规律和知识,并利用这些规律和知识进行预测或决策的技术,机器学习包括监督学习、无监督学习、强化学习,其中监督学习也被称作有监督的学习,有监督的意思就是预先知道据有什么样的目标,通过一些已经知道结果的数据(也叫做

    2023年04月08日
    浏览(30)
  • 机器学习扩散模型简介

            扩散模型的迅速崛起是过去几年机器学习领域最大的发展之一。在这本易于理解的指南中了解您需要了解的有关扩散模型的所有信息。         扩散模型是生成模型,在过去几年中越来越受欢迎,这是有充分理由的。 仅 在 2020 年代发布的几篇开创性论文就向

    2024年01月21日
    浏览(35)
  • 机器学习简介

    机器学习是人工智能(AI)的一个子领域,专注于使用算法和统计模型使计算机系统能够执行特定任务,而无需使用明确的指令。相反,它依赖于模式和推断。其核心思想是:给予机器大量数据,让机器从这些数据中学习,并逐渐改进它的预测或决策。 2 4 6 8 ? 机器学习视角

    2024年02月11日
    浏览(31)
  • 机器学习-降维简介

        机器学习:  正如本文所讨论的,机器学习不过是一个研究领域,它允许计算机像人类一样“学习”而无需显式编程。  什么是预测建模:  预测建模是一个概率过程,允许我们根据一些预测变量来预测结果。这些预测变量基本上是在决定最终结果(即模型的结果)时发

    2023年04月09日
    浏览(33)
  • 机器学习基本概念简介

    一、机器学习是在干什么? 以中学时代所学的函数为例,做应用题时我们都会建立相应的正比例函数、二次函数等来解决,给定一个自变量x都能得到唯一的因变量y。现在我想找到一个函数ƒ,它的输入并不是数字,而是一段语音,最后相应的文字,亦或输入的是一副图片,

    2024年04月15日
    浏览(41)
  • 机器学习笔记 - 局部敏感哈希简介

            局部敏感散列  (LSH) 技术,可显著加快对数据的邻居搜索或近似重复检测。例如,这些技术可用于以惊人的速度过滤掉抓取网页的重复项,或者从地理空间数据集中对附近点执行近恒定时间查找。          让我们快速回顾一下其他类型的哈希函数,哈希函

    2024年02月12日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包