为什么要学习消息队列

这篇具有很好参考价值的文章主要介绍了为什么要学习消息队列。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

为什么要学习消息队列

消息队列作为使用最广泛、生命力最旺盛的中间件,无论技术如何发展,都离不开分布式系统的最基本需求:通信。它涉及的底层技术是非常全面的,比如:高性能通信、海量数据存储、高并发等。并且,消息队列具有功能简洁、结构清晰的特点,入门简单但具有足够的深度,适合用来进行深入地分析和学习

学好消息队列,不应该仅仅停留在使用层面上,还需要深入了解它的设计思路、实现原理和使用的底层技术。但是要注意循序渐进,由浅入深地去学习。

消息队列处理的问题

一、异步任务

二、流量控制

三、服务解耦

选择消息队列的基本标准

  1. 开源
  2. 社区活跃度高
  3. 消息的可靠传递:确保不丢消息
  4. Cluster:支持集群,确保不会因为某个节点宕机导致服务不可用,当然也不能丢消息;
  5. 性能:具备足够好的性能,能满足绝大多数场景的性能要求。

可供选择的消息队列

一、RabbitMQ

​ 轻量级、迅捷,它的 Slogan,也就是宣传口号,也很明确地表明了 RabbitMQ 的特点:Messaging that just works,“开箱即用的消息队列”。也就是说,RabbitMQ 是一个相当轻量级的消息队列,非常容易部署和使用。

优点

  1. 轻量
  2. 使用方便
  3. 客户端支持的语言很多
  4. Exchange功能强大

缺点

  1. 对消息堆积的支持不好
  2. 性能很差
  3. 编写的语言难度大且冷门

二、RocketMQ

RocketMQ 是阿里巴巴在 2012 年开源的消息队列产品,后来捐赠给 Apache 软件基金会,2017 正式毕业,成为 Apache 的顶级项目。阿里内部也是使用 RocketMQ 作为支撑其业务的消息队列,经历过多次“双十一”考验,它的性能、稳定性和可靠性都是值得信赖的。作为优秀的国产消息队列,近年来越来越多的被国内众多大厂使用。

RocketMQ 就像一个品学兼优的好学生,有着不错的性能,稳定性和可靠性,具备一个现代的消息队列应该有的几乎全部功能和特性,并且它还在持续的成长中。

优点

  1. 社区中文且活跃
  2. 性能高
  3. 二开容易

缺点

  1. 不够国际化

三、Kafka

Kafka 与周边生态系统的兼容性是最好的没有之一,尤其在大数据和流计算领域,几乎所有的相关开源软件系统都会优先支持 Kafka。

在早期的版本中,为了获得极致的性能,在设计方面做了很多的牺牲,比如不保证消息的可靠性,可能会丢失消息,也不支持集群,功能上也比较简陋,这些牺牲对于处理海量日志这个特定的场景都是可以接受的。这个时期的 Kafka 甚至不能称之为一个合格的消息队列。

但是,请注意,重点一般都在后面。随后的几年 Kafka 逐步补齐了这些短板,你在网上搜到的很多消息队列的对比文章还在说 Kafka 不可靠,其实这种说法早已经过时了。当下的 Kafka 已经发展为一个非常成熟的消息队列产品,无论在数据可靠性、稳定性和功能特性等方面都可以满足绝大多数场景的需求。

第二梯队消息队列

ActiveMQ

​ ActiveMQ 是最老牌的开源消息队列,是十年前唯一可供选择的开源消息队列,目前已进入老年期,社区不活跃。无论是功能还是性能方面,ActiveMQ 都与现代的消息队列存在明显的差距,它存在的意义仅限于兼容那些还在用的爷爷辈儿的系统。

ZeroMQ

​ 严格来说 ZeroMQ 并不能称之为一个消息队列,而是一个基于消息队列的多线程网络库,如果你的需求是将消息队列的功能集成到你的系统进程中,可以考虑使用 ZeroMQ。

Pulsar

​ Pulsar 是一个新兴的开源消息队列产品,最早是由 Yahoo 开发,目前处于成长期,流行度和成熟度相对没有那么高。与其他消息队列最大的不同是,Pulsar 采用存储和计算分离的设计,我个人非常喜欢这种设计,它有可能会引领未来消息队列的一个发展方向,建议你持续关注这个项目。

选择

如果说,消息队列并不是你将要构建系统的主角之一,你对消息队列功能和性能都没有很高的要求,只需要一个开箱即用易于维护的产品,我建议你使用 RabbitMQ。

如果你的系统使用消息队列主要场景是处理在线业务,比如在交易系统中用消息队列传递订单,那 RocketMQ 的低延迟和金融级的稳定性是你需要的。

如果你需要处理海量的消息,像收集日志、监控信息或是前端的埋点这类数据,或是你的应用场景大量使用了大数据、流计算相关的开源产品,那 Kafka 是最适合你的消息队列。文章来源地址https://www.toymoban.com/news/detail-481333.html

到了这里,关于为什么要学习消息队列的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《让云落地 云计算服务模式》第一章 [为什么是云计算,为什么是现在] 学习

    “时间会带来标准和最佳实践” 1.云计算的由来 云计算是从中央主机时代,向个人计算机时代诞生带来的分布式主从架构时代,以及企业能够通过覆盖全球的计算机网络联系世界的互联网时代的自然发展。 每一次新的技术革命都会伴随着阻力。早期的试用者和风险承受者会

    2024年04月28日
    浏览(42)
  • 神经网络为什么可以学习

    本资料转载于B站up主:大模型成长之路,仅用于学习和讨论,如有侵权请联系 动画解析神经网络为什么可以学习_哔哩哔哩_bilibilis 1.1 也可以是一层,也可以是多层  2.1 每两个神经元之间有两个参数,我们称之为权重 3.1 4.1 5.1 6.1 7.1 8.1 9.1 10.1 11.1 12.1 13.1 14.1 15.1 16.1  17.1 18.1

    2024年02月12日
    浏览(127)
  • ChatGPT为什么使用强化学习

    最近出现很多ChatGPT相关论文,但基本都是讨论其使用场景和伦理问题,至于其原理,ChatGPT在其主页上介绍,它使用来自人类反馈的强化学习训练模型,方法与InstructGPT相同,只在数据收集上有细微的差别。 那么,InstructGPT和ChatGPT为什么使用强化学习呢?先看个示例: 先不论

    2023年04月13日
    浏览(42)
  • Kafka如何保证消息的消费顺序【全局有序、局部有序】、Kafka如何保证消息不被重复消费、Kafka为什么这么快?【重点】、Kafka常见问题汇总【史上最全】

    目录 Kafka消息生产 一个Topic对应一个Partition 一个Topic对应多个Partition Kafka消息的顺序性保证(Producer、Consumer) 全局有序 局部有序  max.in.flight.requests.per.connection参数详解 Kafka的多副本机制 Kafka的follower从leader同步数据的流程 Kafka的follower为什么不能用于消息消费 Kafka的多分区

    2024年04月11日
    浏览(52)
  • 半监督学习为什么能work?以及直推式学习是什么

    今天在看半监督的时候,突然想起这个问题: 半监督用训好的模型去生成伪标签,再把伪标签当做真标签去训, 但是模型能生成伪标签说明模型已经学到了这部分内容,把模型已经学会的内容加进去,让模型继续学,能学出什么新东西呢? 去知乎搜了一下,一张图简洁明了

    2023年04月10日
    浏览(45)
  • 机器学习中为什么需要梯度下降

            在机器学习中,梯度下降是一种常用的优化算法,用于寻找损失函数的最小值。我们可以用一个简单的爬山场景来类比梯度下降的过程。         假设你被困在山上,需要找到一条通往山下的路。由于你是第一次来到这座山,对地形不熟悉,你只能通过尝试和

    2024年02月19日
    浏览(49)
  • 机器学习强基计划10-1:为什么需要集成学习?核心原理是什么?

    机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编

    2024年02月06日
    浏览(58)
  • 为什么要学习大模型应用开发?

    就是prompt工程师它的底层透视。 人工智能大潮已来,不加入就可能被淘汰。就好像现在职场里谁不会用PPT和excel一样,基本上你见不到。你问任何一个人问他会不会用PPT,他都会说会用,只是说好还是不好。你除非说这个岗位跟电脑完全无关。但凡说能用上电脑的,基本上都

    2024年04月08日
    浏览(87)
  • 为什么ChatGPT用强化学习而非监督学习?

    为什么ChatGPT非得用强化学习,而不直接用监督学习?原因不是那么显而易见。在上周发布的 《John Schulman:通往TruthGPT之路》 一文中,OpenAI联合创始人、ChatGPT主要负责人John Schulman分享了OpenAI在人类反馈的强化学习(RLHF)方面的进展,分析了监督学习和强化学习各自存在的挑

    2024年02月05日
    浏览(40)
  • Python(一):为什么我们要学习Python?

    ❤️ 专栏简介:本专栏记录了我个人从零开始学习Python编程的过程。在这个专栏中,我将分享我在学习Python的过程中的学习笔记、学习路线以及各个知识点。 ☀️ 专栏适用人群 :本专栏适用于希望学习Python编程的初学者和有一定编程基础的人。无论你是学生、职场人士还是

    2024年02月13日
    浏览(68)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包