Hbase中的region和rowkey

这篇具有很好参考价值的文章主要介绍了Hbase中的region和rowkey。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

region

Region是HBase数据管理的基本单位,region有一点像关系型数据的分区。
Region中存储这用户的真实数据,而为了管理这些数据,HBase使用了RegionSever来管理region。

region的分配

一个表中可以包含一个或多个Region。

每个Region只能被一个RS(RegionServer)提供服务,RS可以同时服务多个Region,来自不同RS上的Region组合成表格的整体逻辑视图。

regionServer其实是hbase的服务,部署在一台物理服务器上,region有一点像关系型数据的分区,数据存放在region中,当然region下面还有很多结构,确切来说数据存放在memstore和hfile中。我们访问hbase的时候,先去hbase 系统表查找定位这条记录属于哪个region,然后定位到这个region属于哪个服务器,然后就到哪个服务器里面查找对应region中的数据

region结构

Hbase中的region和rowkey

数据的写入

Hbase中的region和rowkey

Memstore Flush流程

flus流程分为三个阶段:

  1. prepare阶段:遍历当前 Region中所有的 MemStore ,将 MemStore 中当前数据集 CellSkpiListSet 做一个快照 snapshot;然后再新建一个 CellSkipListSet。后期写入的数据都会写入新的 CellSkipListSet 中。prepare 阶段需要加一把 updataLock 对写请求阻塞,结束之后会释放该锁。因为此阶段没有任何费时操作,因此锁持有时间很短

  2. flush阶段:遍历所有 MemStore,将 prepare 阶段生成的snapshot 持久化为临时文件,临时文件会统一放到目录.tmp下。这个过程因为涉及到磁盘 IO 操作,因此相对耗时

  3. commit阶段:遍历所有 MemStore,将flush阶段生成的临时文件移动到指定的 ColumnFamily 目录下,针对 HFile生成对应的 StoreFile 和 Reader,把 StoreFile 添加到 HStore 的 storefiles 列表中,最后再清空 prepare 阶段生成的 snapshot快照

Compact 合并机制

hbase中的合并机制分为自动合并和手动合并

自动合并:

  • minor compaction 小合并
  • major compacton 大合并

minor compaction(小合并)
将 Store 中多个 HFile 合并为一个相对较大的 HFile 过程中会选取一些小的、相邻的 StoreFile 将他们合并成一个更大的 StoreFile,对于超过 TTL 的数据、更新的数据、删除的数据仅仅只是做了标记,并没有进行物理删除。一次 minor compaction 过后,storeFile会变得更少并且更大,这种合并的触发频率很高

小合并的触发方式:
memstore flush会产生HFile文件,文件越来越多就需要compact.每次执行完Flush操作之后,都会对当前Store中的文件数进行判断,一旦文件数大于配置3,就会触发compaction。compaction都是以Store为单位进行的,而在Flush触发条件下,整个Region的所有Store都会执行compact

后台线程周期性检查
检查周期可配置:
hbase.server.thread.wakefrequency 默认10000毫秒)
hbase.server.compactchecker.interval.multiplier 默认1000
CompactionChecker大概是2hrs 46mins 40sec 执行一次

<!--表示至少需要三个满足条件的store file时,minor compaction才会启动-->
<property>
        <name>hbase.hstore.compactionThreshold</name>
        <value>3</value>
</property>

<!--表示一次minor compaction中最多选取10个store file-->
<property>
        <name>hbase.hstore.compaction.max</name>
        <value>10</value>
</property>

<!--默认值为128m,
表示文件大小小于该值的store file 一定会加入到minor compaction的store file中
-->
<property>
        <name>hbase.hstore.compaction.min.size</name>
        <value>134217728</value>
</property>

<!--默认值为LONG.MAX_VALUE,表示文件大小大于该值的store file 一定会被minor compaction排除-->
<property>
        <name>hbase.hstore.compaction.max.size</name>
        <value>9223372036854775807</value>
</property>

major compaction(大合并)

合并 Store 中所有的 HFile 为一个 HFile,将所有的 StoreFile 合并成为一个 StoreFile,这个过程中还会清理三类无意义数据:被删除的数据、TTL过期数据、版本号超过设定版本号的数据。合并频率比较低,默认7天执行一次,并且性能消耗非常大,建议生产关闭(设置为0),在应用空间时间手动触发。一般是可以手动控制进行合并,防止出现在业务高峰期。

线程先检查小文件数是否大于配置3,一旦大于就会触发compaction。
大文件周期性合并成Major Compaction
如果不满足,它会接着检查是否满足major compaction条件
如果当前store中hfile的最早更新时间早于某个值mcTime就会触发major compaction 
(默认7天触发一次,可配置手动触发)

<!--默认值为7天进行一次大合并,-->
<property>
        <name>hbase.hregion.majorcompaction</name>
        <value>604800000</value>
</property>

手动合并

一般来讲,手动触发compaction通常是为了执行major compaction,一般有这些情况需要手动触发合并是因为很多业务担心自动maior compaction影响读写性能,因此会选择低峰期手动触发也有可能是用户在执行完alter操作之后希望立刻生效,执行手动触发maiorcompaction:

# 造数据
truncate 'doit:test'
put 'doit:test','001','f1:name','zss'
put 'doit:test','002','f1:name','zss'
put 'doit:test','003','f1:name','zss'
put 'doit:test','004','f1:name','zss'
flush 'doit:test'                    
put 'doit:test','005','f1:name','zss'
put 'doit:test','006','f1:name','zss'
put 'doit:test','007','f1:name','zss'
put 'doit:test','008','f1:name','zss'
flush 'doit:test'                    
put 'doit:test','009','f1:name','zss'
put 'doit:test','010','f1:name','zss'
put 'doit:test','011','f1:name','zss'
put 'doit:test','012','f1:name','zss'
flush 'doit:test'
put 'doit:test','013','f1:name','zss'
put 'doit:test','014','f1:name','zss'
put 'doit:test','015','f1:name','zss'
put 'doit:test','016','f1:name','zss'
flush 'doit:test'
put 'doit:test','017','f1:name','zss'
put 'doit:test','018','f1:name','zss'
put 'doit:test','019','f1:name','zss'
put 'doit:test','020','f1:name','zss'
flush 'doit:test'
put 'doit:test','021','f1:name','zss'
put 'doit:test','022','f1:name','zss'
put 'doit:test','023','f1:name','zss'
put 'doit:test','024','f1:name','zss'
flush 'doit:test'
put 'doit:test','025','f1:name','zss'
put 'doit:test','026','f1:name','zss'
put 'doit:test','027','f1:name','zss'
put 'doit:test','028','f1:name','zss'
flush 'doit:test'
put 'doit:test','021','f1:name','zss'
put 'doit:test','022','f1:name','zss'
put 'doit:test','023','f1:name','zss'
put 'doit:test','024','f1:name','zss'
flush 'doit:test'
put 'doit:test','021','f1:name','zss'
put 'doit:test','022','f1:name','zss'
put 'doit:test','023','f1:name','zss'
put 'doit:test','024','f1:name','zss'
flush 'doit:test'
put 'doit:test','021','f1:name','zss'
put 'doit:test','022','f1:name','zss'
put 'doit:test','023','f1:name','zss'
put 'doit:test','024','f1:name','zss'
flush 'doit:test'

put 'doit:test','021','f1:name','zss'
put 'doit:test','022','f1:name','zss'
put 'doit:test','023','f1:name','zss'
put 'doit:test','024','f1:name','zss'
flush 'doit:test'

# 每次flush一下都会在底层生成一个小文件

Hbase中的region和rowkey

##使用major_compact命令
major_compact tableName

major_compact 'doit:test'

Hbase中的region和rowkey

region的拆分

region中存储的是一张表的数据,当region中的数据条数过多的时候,会直接影响查询效率。当region过大的时候,region会被拆分为两个region,HMaster会将分裂的region分配到不同的regionserver上,这样可以让请求分散到不同的RegionServer上,已达到负载均衡 , 这也是HBase的一个优点

region的拆分策略

  1. ConstantSizeRegionSplitPolicy:0.94版本前,HBase region的默认切分策略

当region中最大的store大小超过某个阈值(hbase.hregion.max.filesize=10G)之后就会触发切分,一个region等分为2个region。

但是在生产线上这种切分策略却有相当大的弊端(切分策略对于大表和小表没有明显的区分):
1.阈值(hbase.hregion.max.filesize)设置较大对大表比较友好,但是小表就有可能不会触发分裂,极端情况下可能就1个,形成热点,这对业务来说并不是什么好事。
2.如果设置较小则对小表友好,但一个大表就会在整个集群产生大量的region,这对于集群的管理、资源使用、failover来说都不是一件好事。

  1. IncreasingToUpperBoundRegionSplitPolicy:0.94版本~2.0版本默认切分策略

总体看和ConstantSizeRegionSplitPolicy思路相同,一个region中最大的store大小大于设置阈值就会触发切分。 但是这个阈值并不像ConstantSizeRegionSplitPolicy是一个固定的值,而是会在一定条件下不断调整,调整规则和region所属表在当前regionserver上的region个数有关系.

region split阈值的计算公式是:
1.设regioncount:是region所属表在当前regionserver上的region的个数
2.阈值 = regioncount^3 * 128M * 2,当然阈值并不会无限增长,最大不超过MaxRegionFileSize(10G),当region中最大的store的大小达到该阈值的时候进行region split

例如:
• 第一次split阈值 = 1^3 * 256 = 256MB
• 第二次split阈值 = 2^3 * 256 = 2048MB
• 第三次split阈值 = 3^3 * 256 = 6912MB
• 第四次split阈值 = 4^3 * 256 = 16384MB > 10GB,因此取较小的值10GB
• 后面每次split的size都是10GB了

特点
• 相比ConstantSizeRegionSplitPolicy,可以自适应大表、小表;
• 在集群规模比较大的情况下,对大表的表现比较优秀
• 对小表不友好,小表可能产生大量的小region,分散在各regionserver上
• 小表达不到多次切分条件,导致每个split都很小,所以分散在各个regionServer上

  1. SteppingSplitPolicy:2.0版本默认切分策略

相比 IncreasingToUpperBoundRegionSplitPolicy 简单了一些 region切分的阈值依然和待分裂region所属表在当前regionserver上的region个数有关系
• 如果region个数等于1,切分阈值为flush size 128M * 2
• 否则为MaxRegionFileSize。

这种切分策略对于大集群中的大表、小表会比 IncreasingToUpperBoundRegionSplitPolicy 更加友好,小表不会再产生大量的小region,而是适可而止。

  1. KeyPrefixRegionSplitPolicy

根据rowKey的前缀对数据进行分区,这里是指定rowKey的前多少位作为前缀,比如rowKey都是16位的,指定前5位是前缀,那么前5位相同的rowKey在相同的region中

  1. DelimitedKeyPrefixRegionSplitPolicy

保证相同前缀的数据在同一个region中,例如rowKey的格式为:userid_eventtype_eventid,指定的delimiter为 _ ,则split的的时候会确保userid相同的数据在同一个region中。 按照分隔符进行切分,而KeyPrefixRegionSplitPolicy是按照指定位数切分

  1. BusyRegionSplitPolicy

按照一定的策略判断Region是不是Busy状态,如果是即进行切分
如果你的系统常常会出现热点Region,而你对性能有很高的追求,那么这种策略可能会比较适合你。它会通过拆分热点Region来缓解热点Region的压力,但是根据热点来拆分Region也会带来很多不确定性因素,因为你也不知道下一个被拆分的Region是哪个

  1. DisabledRegionSplitPolicy:不启用自动拆分, 需要指定手动拆分

手动合并拆分region

手动合并

hbase(main):025:0> list_regions 'doit:test'
                 SERVER_NAME |                                                          REGION_NAME |  START_KEY |    END_KEY |  SIZE |   REQ |   LOCALITY |
 --------------------------- | -------------------------------------------------------------------- | ---------- | ---------- | ----- | ----- | ---------- |
 linux03,16020,1684200651855 |           doit:test,,1684205468848.920ae3e043ad95890c4f5693cb663bc5. |            | rowkey_010 |     0 |     0 |        0.0 |
 linux01,16020,1684205091382 | doit:test,rowkey_010,1684207066858.5e04eb75e5510ad65a0f3001de3c7aa0. | rowkey_010 | rowkey_015 |     0 |     0 |        0.0 |
 linux02,16020,1684200651886 | doit:test,rowkey_015,1684207066858.ed1b328ca4c485d4fa429922f6c18f0b. | rowkey_015 | rowkey_020 |     0 |     0 |        0.0 |
 linux02,16020,1684200651886 | doit:test,rowkey_020,1684205468848.25d62e8cc2fdaecec87234b8d28f0827. | rowkey_020 | rowkey_030 |     0 |     0 |        0.0 |
 linux03,16020,1684200651855 | doit:test,rowkey_030,1684205468848.2b0468e6643b95159fa6e210fa093e66. | rowkey_030 | rowkey_040 |     0 |     0 |        0.0 |
 linux01,16020,1684205091382 | doit:test,rowkey_040,1684205468848.fb12c09c7c73cfeff0bf79b5dda076cb. | rowkey_040 |            |     0 |     0 |        0.0 |
 6 rows
Took 0.0299 seconds
hbase(main):026:0> merge_region 'doit:test,,1684205468848.920ae3e043ad95890c4f5693cb663bc5.','doit:test,rowkey_010,1684207066858.5e04eb75e5510ad65a0f3001de3c7aa0.'
Took 1.2638 seconds
hbase(main):027:0> list_regions 'doit:test'
                 SERVER_NAME |                                                          REGION_NAME |  START_KEY |    END_KEY |  SIZE |   REQ |   LOCALITY |
 --------------------------- | -------------------------------------------------------------------- | ---------- | ---------- | ----- | ----- | ---------- |
 linux03,16020,1684200651855 |           doit:test,,1684207066859.cdc1226d634c0cf16f58832637f485b6. |            | rowkey_015 |     0 |     0 |        0.0 |
 linux02,16020,1684200651886 | doit:test,rowkey_015,1684207066858.ed1b328ca4c485d4fa429922f6c18f0b. | rowkey_015 | rowkey_020 |     0 |     0 |        0.0 |
 linux02,16020,1684200651886 | doit:test,rowkey_020,1684205468848.25d62e8cc2fdaecec87234b8d28f0827. | rowkey_020 | rowkey_030 |     0 |     0 |        0.0 |
 linux03,16020,1684200651855 | doit:test,rowkey_030,1684205468848.2b0468e6643b95159fa6e210fa093e66. | rowkey_030 | rowkey_040 |     0 |     0 |        0.0 |
 linux01,16020,1684205091382 | doit:test,rowkey_040,1684205468848.fb12c09c7c73cfeff0bf79b5dda076cb. | rowkey_040 |            |     0 |     0 |        0.0 |
 5 rows
Took 0.0271 seconds

手动拆分

hbase(main):029:0> list_regions 'doit:test'
                 SERVER_NAME |                                                          REGION_NAME |  START_KEY |    END_KEY |  SIZE |   REQ |   LOCALITY |
 --------------------------- | -------------------------------------------------------------------- | ---------- | ---------- | ----- | ----- | ---------- |
 linux03,16020,1684200651855 |           doit:test,,1684207066860.8ebf4555c58bd0e5fedae5d4efbe4235. |            | rowkey_030 |     0 |     0 |        0.0 |
 linux03,16020,1684200651855 | doit:test,rowkey_030,1684205468848.2b0468e6643b95159fa6e210fa093e66. | rowkey_030 | rowkey_040 |     0 |     0 |        0.0 |
 linux01,16020,1684205091382 | doit:test,rowkey_040,1684205468848.fb12c09c7c73cfeff0bf79b5dda076cb. | rowkey_040 |            |     0 |     0 |        0.0 |
 3 rows
Took 0.0329 seconds
hbase(main):030:0> split 'doit:test,,1684207066860.8ebf4555c58bd0e5fedae5d4efbe4235.','rowkey_025'
Took 0.1179 seconds
hbase(main):031:0> list_regions 'doit:test'
                 SERVER_NAME |                                                          REGION_NAME |  START_KEY |    END_KEY |  SIZE |   REQ |   LOCALITY |
 --------------------------- | -------------------------------------------------------------------- | ---------- | ---------- | ----- | ----- | ---------- |
 linux02,16020,1684200651886 |           doit:test,,1684207502853.af0819bd7f6daa9db2a8f994fb41682d. |            | rowkey_025 |     0 |     0 |        0.0 |
 linux02,16020,1684200651886 | doit:test,rowkey_025,1684207502853.80d7feace447978ffe4a54418a20afd0. | rowkey_025 | rowkey_030 |     0 |     0 |        0.0 |
 linux03,16020,1684200651855 | doit:test,rowkey_030,1684205468848.2b0468e6643b95159fa6e210fa093e66. | rowkey_030 | rowkey_040 |     0 |     0 |        0.0 |
 linux01,16020,1684205091382 | doit:test,rowkey_040,1684205468848.fb12c09c7c73cfeff0bf79b5dda076cb. | rowkey_040 |            |     0 |     0 |        0.0 |
 4 rows
Took 0.0179 seconds
hbase(main):032:0> split 'doit:test,,1684207502853.af0819bd7f6daa9db2a8f994fb41682d.','rowkey_015'
Took 0.1262 seconds
hbase(main):033:0> list_regions 'doit:test'
                 SERVER_NAME |                                                          REGION_NAME |  START_KEY |    END_KEY |  SIZE |   REQ |   LOCALITY |
 --------------------------- | -------------------------------------------------------------------- | ---------- | ---------- | ----- | ----- | ---------- |
 linux02,16020,1684200651886 |           doit:test,,1684207546572.0f550ec8fa1af0ab9e73032d224d9f00. |            | rowkey_015 |     0 |     0 |        0.0 |
 linux02,16020,1684200651886 | doit:test,rowkey_015,1684207546572.09a2022c54dfef68866ac73e3f78bc70. | rowkey_015 | rowkey_025 |     0 |     0 |        0.0 |
 linux02,16020,1684200651886 | doit:test,rowkey_025,1684207502853.80d7feace447978ffe4a54418a20afd0. | rowkey_025 | rowkey_030 |     0 |     0 |        0.0 |
 linux03,16020,1684200651855 | doit:test,rowkey_030,1684205468848.2b0468e6643b95159fa6e210fa093e66. | rowkey_030 | rowkey_040 |     0 |     0 |        0.0 |
 linux01,16020,1684205091382 | doit:test,rowkey_040,1684205468848.fb12c09c7c73cfeff0bf79b5dda076cb. | rowkey_040 |            |     0 |     0 |        0.0 |
 5 rows
Took 0.0241 seconds

bulkLoad实现批量导入

bulkloader : 一个用于批量快速导入数据到hbase的工具/方法

用于已经存在一批巨量静态数据的情况!如果不用bulkloader工具,则只能用rpc请求,一条一条地通过rpc提交给regionserver去插入,效率极其低下

原理

Hbase中的region和rowkey
相比较于直接写HBase,BulkLoad主要是绕过了写WAL日志这一步,还有写Memstore和Flush到磁盘,从理论上来分析性能会比Put快!

importTsv工具

原理:
Importtsv是hbase自带的一个 csv文件--》HFile文件 的工具,它能将csv文件转成HFile文件,并发送给regionserver。它的本质,是内置的一个将csv文件转成hfile文件的mr程序!

# CSV转HFILE的命令示例如下:
# 001,北戴河,河北省,河北省北戴河昌平区沙河镇赋腾国际创客中心A座4018室
hbase  org.apache.hadoop.hbase.mapreduce.ImportTsv \
-Dimporttsv.separator=, \
-Dimporttsv.columns='HBASE_ROW_KEY,f:city,f:province,x:address'  \
-Dimporttsv.bulk.output=/tsv/output \
user_info \
/tsv/input

ImportTsv命令的参数说明如下:
-Dimporttsv.skip.bad.lines=false - 若遇到无效行则失败
-Dimporttsv.separator=, - 使用特定分隔符,默认是tab也就是\t
-Dimporttsv.timestamp=currentTimeAsLong - 使用导入时的时间戳
-Dimporttsv.mapper.class=my.Mapper - 使用用户自定义Mapper类替换TsvImporterMapper
-Dmapreduce.job.name=jobName - 对导入使用特定mapreduce作业名
-Dcreate.table=no - 避免创建表,注:如设为为no,目标表必须存在于HBase中
-Dno.strict=true - 忽略HBase表列族检查。默认为false
-Dimporttsv.bulk.output=/user/yarn/output 作业的输出目录

hfile

逻辑数据组织格式

Hbase中的region和rowkey

  • Scanned block section:表示顺序扫描HFile时(rile时(包含所有需要被读取的数据)所有的数据块将会被读取,包括Leaf Index Block和Bloom Block;
  • Non-scanned block section:HFile顺序扫描的时候该部分数据不会被读取,主要包括Meta Block和Intermediate Level Data Index Blocks两部分;
  • Load-on-open-section:这部分数据在HBase的region server启动时,需要加载到内存中。包括FileInfo、Bloom filter block、data block index和meta block index等各种索引的元数据信息;
  • Trailer:这部分主要记录了HFile的基本信息、各个部分的偏移值和寻址信息。
  • Data Block:主要存储用户的key,value信息
  • Meta Block:记录布隆过滤器的信息
  • Root Data Index:DataBlock的根索引以及MetaBlock和Bloom Filter的索引
  • Intermediate Level Index:DataBlock的第二层索引
  • Leaf Level Index:DataBlock的第三层索引,即索引数的叶子节点
  • Fileds for midKey:这部分数据是Optional的,保存了一些midKey信息,可以快速地定位到midKey,常常在HFileSplit的时候非常有用
  • MetaIndex:即meta的索引数据,和data index类似,但是meta存放的是BloomFilter的信息
  • FileInfo:保存了一些文件的信息,如lastKey,avgKeylen,avgValueLen等等
  • Bloom filter metadata:是布隆过滤器的索引

物理数据结构图

Hbase中的region和rowkey

数据的读取

Hbase中的region和rowkey

  1. Client访问zookeeper,获取hbase:meta所在RegionServer的节点信息

  2. Client访问hbase:meta所在的RegionServer,获取hbase:meta记录的元数据后先加载到内存中,然后再从内存中根据需要查询的RowKey查询出RowKey所在的Region的相关信息(Region所在RegionServer)

  3. Client访问RowKey所在Region对应的RegionServer,发起数据读取请求

  4. 读取memstore中的数据,看是否有key对应的value的值

  5. 不管memstore中有没有值,都需要去读取Hfile中的数据(再读取Hfile中首先通过索引定位到data block)

  6. 判断cache block中中是否已经加载过需要从文件中读取的bloom block和data block,如果加载过了,就直接读取cache block中的数据,如果没有,就读取文件中的block数据

  7. 将memstore和Hfile中读取的数据汇总取正确的数据返回给客户端

rowkey的设计

设计的三大原则

  1. Rowkey长度原则

Rowkey是一个二进制码流,Rowkey的长度被很多开发者建议设计在10-100个字节,不过建议是越短越好,不要超过16个字节

原因如下:

  • 数据的持久化文件HFile中是按照KeyValue存储的,如果Rowkey过长比如100个字节,1000万列数据光Rowkey就要占用100*1000万=10亿个字节,将近1G数据,这会极大影响Hfile的存储效率;
  • MemStore将缓存部分数据到内存,如果Rowkey字段过长内存的有效利用率降低,系统将无法缓存更多的数据,这会降低检索效率,因此Rowkey的字节长度越短越好。
  • 目前操作系统一般都是64位系统,内存8字节对齐,空值在16个字节,8字节的整数倍利用操作系统的最佳特性。
  1. Rowkey散列原则

如果Rowkey是按时间戳的方式递增,因为rowkey是按照字典顺序排序的,这样会出现大量的数据插入到一个reion中,而其他的region相对比较空闲从而造成热点问题,所以尽量不要将开头相同的内容作为rowkey造成热点问题,可以将时间戳反转后在作为rowkey。

  1. Rowkey唯一原则

必须在设计Rowkey上保证其唯一性。否则前面插入的数据将会被覆盖。

常见的避免热点的方法以及它们的优缺点

加盐

这里所说的加盐不是密码学中的加盐,而是在rowkey的前面增加随机数,具体就是给rowkey分配一个随机前缀以使得它和之前的rowkey的开头不同。分配的前缀种类数量应该和你想使用数据分散到不同的region的数量一致。加盐之后的rowkey就会根据随机生成的前缀分散到各个region上,以避免热点。

哈希

哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是可以预测的。使用确定的哈希可以让客户端重构完整的rowkey,可以使用get操作准确获取某一个行数据

反转

第三种防止热点的方法时反转固定长度或者数字格式的rowkey。这样可以使得rowkey中经常改变的部分(最没有意义的部分)放在前面。这样可以有效的随机rowkey,但是牺牲了rowkey的有序性。
比如手机号的反转,时间戳的反转,当一个连续递增的数字类型想要作为rowkey时,可以用一个很大的数去减这个rowkey,反转后再当成rowkey文章来源地址https://www.toymoban.com/news/detail-481417.html

到了这里,关于Hbase中的region和rowkey的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Hbase---rowkey的设计

    Rowkey长度原则 Rowkey是一个二进制码流,Rowkey的长度被很多开发者建议设计在10-100个字节,不过建议是越短越好,不要超过16个字节 原因如下: 数据的持久化文件HFile中是按照KeyValue存储的,如果Rowkey过长比如100个字节,1000万列数据光Rowkey就要占用100*1000万=10亿个字节,将近

    2024年02月12日
    浏览(33)
  • HBase(18):表空间设计之ROWKEY设计原则

    1 HBase官方的设计原则 1.1 避免使用递增行键/时序数据 如果ROWKEY设计的都是按照顺序递增(例如:时间戳),这样会有很多的数据写入时,负载都在一台机器上。我们尽量应当将写入大压力均衡到各个RegionServer 1.2 避免ROWKEY和列的长度过大 在HBase中,要访问一个Cell(单元格)

    2024年02月12日
    浏览(48)
  • Springboot+Hbase获取regions信息并上报到metrics接口中

    1. 添加HBase和Micrometer依赖 2. 新增HBase配置文件 3. 编写服务获取HBase Admin客户端 4. 获取regions信息并上报 5. 启动定时任务

    2024年02月13日
    浏览(60)
  • 数据模型:HBase如何存储和管理数据

    HBase是一个分布式、可扩展、高性能的列式存储系统,基于Google的Bigtable设计。它是Hadoop生态系统的一部分,可以与HDFS、MapReduce、ZooKeeper等其他组件集成。HBase的核心功能是提供高速、高可靠的读写访问,同时支持大规模数据的随机读写操作。 HBase的设计目标是为大规模数据应

    2024年01月25日
    浏览(33)
  • HBase的数据库安全与权限管理

    HBase是一个分布式、可扩展、高性能的列式存储系统,基于Google的Bigtable设计。它是Hadoop生态系统的一部分,可以与HDFS、MapReduce、ZooKeeper等组件集成。HBase具有高可靠性、高性能和高可扩展性等特点,适用于大规模数据存储和实时数据处理。 在现代企业中,数据安全和权限管

    2024年02月20日
    浏览(45)
  • 大数据处理技术作业——使用HBase&MongoDB&MapReduce进行数据存储和管理

    写这篇文章的目的,主要是为了记录一下这次作业历程,并且笔者了解到很多同志饱受作业折磨,遂简单分享一下个人完成作业的历程,以下内容仅为本人的一些乱七八糟的想法, 仅作参考O(∩_∩)O 1、本作业的链接 【完成本次作业用到的代码文件,列出网盘链接,https://p

    2024年02月07日
    浏览(45)
  • LeetCode surrounded region

    Surrounded Regions Given an m x n matrix board containing ‘X’ and ‘O’, capture all regions that are 4-directionally surrounded by ‘X’. A region is captured by flipping all \\\'O’s into \\\'X’s in that surrounded region. Example 1: Input: board = [[“X”,“X”,“X”,“X”],[“X”,“O”,“O”,“X”],[“X”,“X”,“O”,“X”],[“

    2024年02月07日
    浏览(29)
  • AWS 云区域(region),可用区(AZ)

    AWS 提供三种地理性组件: Regions:区域,即AWS提供云服务的一个区域,其目的是为了用户能就近接入,降低网络延迟。通常是一个城市的若干个AZ组成一个region。2016年,AWS 宣布在其全球region之间建设了100GbE 私有环网。 Availability Zones:一个 region 内至少两个通常三个可用区,

    2024年02月16日
    浏览(44)
  • Ip2region介绍

    ip2region v2.0 - 是一个 离线IP地址定位库 和IP定位数据管理框架,10微秒级别的查询效率,提供了众多主流编程语言的 xdb 数据生成和查询客户端实现。 1、标准化的数据格式 每个 ip 数据段的 region 信息都固定了格式: 国家|区域|省份|城市|ISP ,只有中国的数据绝大部分精确到了

    2024年02月16日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包