pyecharts实现电影数据分析可视化

这篇具有很好参考价值的文章主要介绍了pyecharts实现电影数据分析可视化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

根据电影数据,使用pyecharts进行可视化分析。

数据介绍

import pandas as pd
data=pd.read_csv('./电影.csv')
data.head()

前5行数据如下:
pyecharts实现电影数据分析可视化
需要安装的python库

pip install pandas
pip install pyecharts

数据清洗

查看缺失值

data.isnull().sum()

有部电影没有给出编剧和主演,因此没有爬取到,这不影响数据的分析及可视化。
pyecharts实现电影数据分析可视化
之前数据介绍时可以看到,获取的数据各字段目前没有需要清洗的。这个环节就跳过吧。(想加个表情,没找到在哪加。)

数据可视化

上映年份及电影数量

Year=data['上映年份'].value_counts().reset_index()
Year.rename(columns={"index":"上映年份","上映年份":"电影数量"},inplace=True)
Year.head()

pyecharts实现电影数据分析可视化
我是在jupyter notebook中运行的,如果你在其他编辑器中运行,更改代码最后一行bar.render_notebook()bar.render("xxx.html"),运行成功会生成一个xxx.html的文件,你打开应该就能看到可视化图表。后续代码同理。
导入pyecharts

from pyecharts.charts import Bar,Pie,Line
import pyecharts.options as opts
bar = (
    Bar(init_opts=opts.InitOpts(height='700px', theme='light'))
    .add_xaxis(
        Year['上映年份'].tolist()[::-1])
    .add_yaxis(
            "电影数量",
            Year['电影数量'].tolist()[::-1],
            label_opts=opts.LabelOpts(is_show=False),
        )
    .set_series_opts(itemstyle_opts=opts.ItemStyleOpts(
            border_color='#5C3719', ))
    .set_global_opts(
                title_opts=opts.TitleOpts(
                    title='上映年份及电影数量',
                    subtitle='截止2023年3月',
                    title_textstyle_opts=opts.TextStyleOpts(
                        font_family='Microsoft YaHei',
                        font_weight='bold',
                        font_size=22,
                    ),
                    pos_top='1%'),
                legend_opts=opts.LegendOpts(is_show=True),
                xaxis_opts=opts.AxisOpts(
                    #             name='电影数量',
                    is_show=True,
                    max_=int(Year['电影数量'].max()),
                    axislabel_opts=opts.LabelOpts(
                        font_family='Microsoft YaHei',
                        font_weight='bold',
                        font_size='14'  #标签文本大小
                    )),
                yaxis_opts=opts.AxisOpts(
                    #             name='上映年份',
                    is_show=True,
                    axislabel_opts=opts.LabelOpts(
                        #interval=0,#强制显示所有y轴标签,需要可以加上
                        font_family='Microsoft YaHei',
                        font_weight='bold',
                        font_size='14'  #标签文本大小
                    )),
                tooltip_opts=opts.TooltipOpts(
                    is_show=True,
                    trigger='axis',
                    trigger_on='mousemove|clike',
                    axis_pointer_type='shadow',
                    ),
                toolbox_opts=opts.ToolboxOpts(is_show=True,
                    pos_left="right",
                    pos_top="center",
                    feature={"saveAsImage":{}}
                    )
    ).reversal_axis())
bar.render_notebook()

pyecharts实现电影数据分析可视化
这里我没设置显示全部Y轴标签,代码中给出了强制显示所有Y轴标签的注释。根据图表得出,2010年上映的电影数量最多,为14部电影。

导演及电影数量TOP10

Director=data['导演'].value_counts()[0:11].reset_index()
Director.rename(columns={"index":"导演","导演":"电影数量"},inplace=True)
Director.head()

pyecharts实现电影数据分析可视化

pie = (
    Pie(init_opts=opts.InitOpts(theme='light'))
    .add(
        series_name='电影类型',
        data_pair=[list(z) for z in zip(Director['导演'].to_list(), Director['电影数量'].to_list())],
        radius=["40%", "75%"],
    )
#     .set_colors(["blue", "green", "yellow", "red", "pink", "orange", "purple"])
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="导演及电影数量",
            subtitle='TOP10',
                    title_textstyle_opts=opts.TextStyleOpts(
                        font_family='Microsoft YaHei',
                        font_weight='bold',
                        font_size=22,
                    ),
            ),
        legend_opts=opts.LegendOpts(
            pos_left="left",
            pos_top="center",
            orient='vertical',
            is_show=True
            ),
        toolbox_opts=opts.ToolboxOpts(
            is_show=True,
            pos_left="right",
            pos_top="center",
            feature={"saveAsImage":{}}
            )
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
)
pie.render_notebook()

pyecharts实现电影数据分析可视化
这个只取了TOP10的数据,如果你想取更多的数据,更改

Director=data['导演'].value_counts()[0:11].reset_index()

[0:10]表示从索引0取到索引9,你可以自己更改。

编剧及电影数量TOP10

Screenwriter=data['编剧'].value_counts()[0:11].reset_index()
Screenwriter.rename(columns={"index":"编剧","编剧":"电影数量"},inplace=True)
Screenwriter.head()

pyecharts实现电影数据分析可视化

c = (
    Pie(init_opts=opts.InitOpts(theme='light'))
    .add(
        "",
        [list(z) for z in zip(Screenwriter['编剧'].to_list(), Screenwriter['电影数量'].to_list())],
        radius=["30%", "75%"],
        rosetype="radius",
        )
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="编剧及电影数量",
            subtitle='TOP10',
        ),
        
        legend_opts=opts.LegendOpts(
            pos_left="left",
            pos_top="center",
            orient='vertical',
            is_show=True,
        )
    )
)
c.render_notebook()

pyecharts实现电影数据分析可视化

电影片长及数量

Film_length=data['片长'].value_counts().sort_index().reset_index()
Film_length.rename(columns={"index":"片长","片长":"电影数量"},inplace=True)
Film_length

pyecharts实现电影数据分析可视化

c = (
    Bar()
    .add_xaxis(Film_length['片长'].to_list())
    .add_yaxis(
        "电影数量", Film_length['电影数量'].to_list(),
        label_opts=opts.LabelOpts(is_show=False),
              )
    .set_global_opts(title_opts=opts.TitleOpts(title="电影片长及数量"))
)
c.render_notebook()

pyecharts实现电影数据分析可视化
电影的片长,这个最短45分钟,最长238分钟,主要集中在98-132分钟左右。我觉得电影的质量和它的时长是没有关系的,主要还是内容吧。

电影评分及数量

Douban_score=data['豆瓣评分'].value_counts().sort_index(ascending=False).reset_index()
Douban_score.rename(columns={"index":"豆瓣评分","豆瓣评分":"电影数量"},inplace=True)
Douban_score

pyecharts实现电影数据分析可视化

    Line()
    .set_global_opts(
        title_opts=opts.TitleOpts(title="电影豆瓣评分及数量"),
        xaxis_opts=opts.AxisOpts(type_="category"),
        yaxis_opts=opts.AxisOpts(
            type_="value",
            axistick_opts=opts.AxisTickOpts(is_show=True),
            splitline_opts=opts.SplitLineOpts(is_show=True),
        ),
    )
    .add_xaxis(xaxis_data=Douban_score['豆瓣评分'])
    .add_yaxis(
        series_name="电影数量",
        y_axis=Douban_score['电影数量'],
        symbol="emptyCircle",
        is_symbol_show=True,
        label_opts=opts.LabelOpts(is_show=False),
        itemstyle_opts=opts.ItemStyleOpts(
            color="red"),
        markpoint_opts=opts.MarkPointOpts(
            data=[opts.MarkPointItem(type_="max",name="最大值")]
        )
    )
    
)
c.render_notebook()

pyecharts实现电影数据分析可视化
可以看出豆瓣评分最多的分值是8.9分,总共41部电影得到了此分值。每个人的喜好不同,你觉得很好的电影,别人觉得或许没那么好。这也体现出一直保持在高评分电影的可贵。

本文先写到这里,后面我再更新吧,关于pyecharts的配置有很多,具体可以根据官网文档把图表更改成自己需要的样式。文章来源地址https://www.toymoban.com/news/detail-481746.html

到了这里,关于pyecharts实现电影数据分析可视化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 毕业设计——基于网络爬虫的电影数据可视化分析系统的设计与实现(综述+爬虫源码+web可视化展示源码)

    整个系统包括两大部分,如需要完整源码,可私信博主 一部分是使用python构建的爬虫,可爬取豆瓣电影数据并将爬取的数据存储在csv中,同时写入MySQL数据库。第二部分是针对爬取的数据进行多维数据清晰和分析,采用Flask框架进行前端的可视化呈现。 爬虫部分的基本原理:

    2024年04月16日
    浏览(84)
  • 《PySpark大数据分析实战》-27.数据可视化图表Pyecharts介绍

    📋 博主简介 💖 作者简介:大家好,我是wux_labs。😜 热衷于各种主流技术,热爱数据科学、机器学习、云计算、人工智能。 通过了TiDB数据库专员(PCTA)、TiDB数据库专家(PCTP)、TiDB数据库认证SQL开发专家(PCSD)认证。 通过了微软Azure开发人员、Azure数据工程师、Azure解决

    2024年01月24日
    浏览(49)
  • 电影数据可视化综合分析

    1.1 沈腾参演电影数据获取 1.2 电影数据可视化分析 大家好✨,这里是bio🦖。点赞+关注不迷路。数据可视化在数据科学和数据分析中非常重要,例如论文中配色精美的结果图、PPT汇报中突出数据差异数据分析图等。通过可视化,我们可以直观地观察和理解数据的分布、趋势、

    2024年02月12日
    浏览(45)
  • 【数据分析与可视化】pyecharts可视化图表讲解及实战(超详细 附源码)

    需要源码请点赞关注收藏后评论区留言私信~~~ pyecharts是基于Echart图表的一个类库,而Echart是百度开源的一个可视化JavaScript库 pyecharts主要基于web浏览器进行显示,绘制的图形比较多,包括折线图、柱状图、饼图、漏斗图、地图、极坐标图等,代码量很少,而且很灵活,绘制出

    2024年02月01日
    浏览(50)
  • 大数据可视化——基于Python豆瓣电影数据可视化分析

    本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与演员表现的工具。项目的关键步骤包括

    2024年02月04日
    浏览(83)
  • 大数据可视化——基于Python豆瓣电影数据可视化分析系统

    本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与演员表现的工具。项目的关键步骤包括

    2024年01月21日
    浏览(59)
  • Pandas+Pyecharts | 双十一美妆销售数据分析可视化

    大家好,我是 👉 【Python当打之年(点击跳转)】 本期利用 python 分析 双十一美妆销售数据 ,看看: 双十一前后几天美妆订单数量、总销量 各美妆品牌销量情况 美妆品牌一级/二级分类占比 各美妆品牌价格箱型分布情况 各美妆品牌平均价格 美妆品牌词云 等等… 希望对大家有

    2024年02月13日
    浏览(44)
  • 毕设 大数据电影数据分析与可视化系统

    今天学长向大家介绍一个机器视觉的毕设项目 🚩基于大数据的电影数据分析与可视化系统 项目运行效果(视频): 毕业设计 大数据电影评论情感分析 项目获取: https://gitee.com/sinonfin/algorithm-sharing 研究中国用户电影数据,有助于窥探中国电影市场发展背后的规律,理解其来龙去

    2024年02月04日
    浏览(52)
  • Python通过pyecharts对爬虫房地产数据进行数据可视化分析(一)

    对Python通过代理使用多线程爬取安居客二手房数据(二)中爬取的房地产数据进行数据分析与可视化展示 我们爬取到的房产数据,主要是武汉二手房的房源信息,主要包括了待售房源的户型、面积、朝向、楼层、建筑年份、小区名称、小区所在的城区-镇-街道、房子被打的标

    2024年02月07日
    浏览(56)
  • 基于python大数据的电影可视化分析及电影推荐

    随着信息技术和互联网技术的快速发展,利用数据采集技术实现用户感兴趣的数据收集分析成为很多互联网公司研究讨论的热门话题。通过对基于Python的大数据的电影可视化分析与电影推荐,采集进行电影热度动态变化的需求进行调查分析,发现作为研究电影热度波动变化的

    2023年04月23日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包