每天五分钟机器学习:如何确定梯度下降中的学习率?

这篇具有很好参考价值的文章主要介绍了每天五分钟机器学习:如何确定梯度下降中的学习率?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文重点

学习率是梯度下降算法中的一个重要参数,它控制着每次迭代中参数的更新幅度,因此学习率的大小直接影响着算法的收敛速度和精度。在实际应用中,如何选择合适的学习率是一个非常重要的问题。

手动调整法

最简单的方法是手动调整学习率。我们可以根据经验或者试错的方式来选择一个合适的学习率。通常来说,学习率的初始值可以设置为一个比较小的值,例如0.01或者0.001,然后根据模型的训练情况逐步调整学习率的大小。

每天五分钟机器学习:如何确定梯度下降中的学习率?

如果发现模型的损失函数在训练过程中波动较大或者无法收敛,就可以尝试降低学习率;如果发现模型的收敛速度过慢,就可以尝试增加学习率。这种方法的优点是简单易行,但是需要大量的试错和经验积累,比较耗费时间。

学习率衰减

学习率衰减是一种常用的学习率调整方法,它可以在训练过程中逐步降低学习率的大小,从而使得模型更加稳定和收敛。这样的模型训练是有很大的好处的,比如开始训练的时候,学习率大一些,相当于下山速度快一些,模型训练速度快,随着训练的进行,模型的学习率逐渐变小,可以使得模型不会跨过局部最小值,能够更快的收敛。

每天五分钟机器学习:如何确定梯度下降中的学习率?

常见的学习率衰减方法包括指数衰减、余弦衰减、多项式衰减等。以指数衰减为例,其更新公式为:文章来源地址https://www.toymoban.com/news/detail-481944.html

到了这里,关于每天五分钟机器学习:如何确定梯度下降中的学习率?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习_梯度下降

    计算梯度向量其几何意义,就是函数变化的方向,而且是变化最快的方向。对于函数f(x),在点(xo,yo),梯度向量的方向也就是y值增加最快的方向。也就是说,沿着梯度向量的方向 △f(xo),能找到函数的最大值。反过来说,沿着梯度向量相反的方向,也就是 -△f(xo)的方向,梯度

    2024年01月19日
    浏览(45)
  • 梯度下降与机器学习的关系

    梯度下降是一种优化算法,常用于机器学习中的参数优化问题。在机器学习中,我们通常需要通过调整模型的参数来最小化损失函数,从而使模型能够更好地拟合数据。梯度下降算法通过不断迭代更新参数,沿着损失函数的负梯度方向移动,逐步接近最优解。 以下是梯度下降

    2024年02月22日
    浏览(41)
  • [机器学习] 1. 梯度下降 Gradient Descent 与随机梯度下降 Stochastic Gradient Descent

    ML Theory 太魔怔了!!!!! 从微积分课上我们学到 对一个 (mathscr C^2) 函数,其二阶泰勒展开的皮亚诺余项形式 [f(bm w\\\') = f(bm w) + langle nabla f(bm w), bm w\\\' - bm wrangle + o(|bm w\\\' - bm w|)] 这说明只要 (bm w\\\') 和 (bm w) 挨得足够接近,我们就可以用 (f(bm w) + langle nabla f(

    2024年02月08日
    浏览(52)
  • 机器学习&&深度学习——随机梯度下降算法(及其优化)

    在我们没有办法得到解析解的时候,我们可以用过梯度下降来进行优化,这种方法几乎可以所有深度学习模型。 关于优化的东西,我自己曾经研究过智能排班算法和优化,所以关于如何找局部最小值,以及如何跳出局部最小值的一些基本思想是有感触的,随机梯度算法和其优

    2024年02月15日
    浏览(43)
  • 机器学习中梯度下降法的缺点

    机器学习中的梯度下降法是一种寻找函数最小值的优化算法,广泛应用于训练各种模型,尤其是在深度学习中。尽管其应用广泛,但梯度下降法也存在一些不可忽视的缺点: 1. 局部最小值和鞍点 局部最小值问题:  对于非凸函数,梯度下降法可能会陷入局部最小值,而不是

    2024年02月20日
    浏览(40)
  • 机器学习(二):线性回归之梯度下降法

    ✍ 作者简介: i阿极 ,CSDN Python领域新星创作者, 专注于分享python领域知识。 ✍ 本文录入于《机器学习案例》 ,本专栏精选了经典的机器学习算法进行讲解,针对大学生、初级数据分析工程师精心打造,对机器学习算法知识点逐一击破,不断学习,提升自我。 ✍ 订阅后,

    2023年04月22日
    浏览(44)
  • 【机器学习(二)】线性回归之梯度下降法

    ✍ 作者简介: i阿极 ,CSDN Python领域新星创作者, 专注于分享python领域知识。 ✍ 本文录入于《机器学习案例》 ,本专栏精选了经典的机器学习算法进行讲解,针对大学生、初级数据分析工程师精心打造,对机器学习算法知识点逐一击破,不断学习,提升自我。 ✍ 订阅后,

    2023年04月14日
    浏览(43)
  • 机器学习中为什么需要梯度下降

            在机器学习中,梯度下降是一种常用的优化算法,用于寻找损失函数的最小值。我们可以用一个简单的爬山场景来类比梯度下降的过程。         假设你被困在山上,需要找到一条通往山下的路。由于你是第一次来到这座山,对地形不熟悉,你只能通过尝试和

    2024年02月19日
    浏览(49)
  • 机器学习--决策树、线性模型、随机梯度下降

    🤵‍♂️ 个人主页:@Lingxw_w的个人主页 ✍🏻作者简介:计算机科学与技术研究生在读 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+    目录  一、决策树 二、线性模型 三、随机梯度下降 决策树(decision

    2024年02月03日
    浏览(41)
  • 机器学习_通过梯度下降找到最佳参数

    所谓训练机器,也称拟合的过程,也就是 确定模型内部参数的过程 。具体到线性模型,也就是确定y’=wx+b 函数中的w和b。 对于线性回归来说,针对损失函数的 梯度下降 (gradient descent )方法可以使猜测沿着 正确的方向前进 ,因此总能找到比起上一次猜测时 误差更小的w和b组

    2024年01月21日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包