机器学习实战六步法之训练模型、优化模型、部署模型(七)

这篇具有很好参考价值的文章主要介绍了机器学习实战六步法之训练模型、优化模型、部署模型(七)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

👍【AI机器学习入门与实战】目录
🍭基础篇
🔥 第一篇:【AI机器学习入门与实战】AI 人工智能介绍
🔥 第二篇:【AI机器学习入门与实战】机器学习核心概念理解
🔥 第三篇:【AI机器学习入门与实战】机器学习算法都有哪些分类?
🔥 第四篇:【AI机器学习入门与实战】数据从何而来?
🔥 第五篇:【AI机器学习入门与实战】数据预处理的招式:闪电五连鞭!
🔥 第六篇:【AI机器学习入门与实战】选择合适的算法:选择比努力重要!
🔥 第七篇:【AI机器学习入门与实战】训练模型、优化模型、部署模型
🍭实战篇
🔥 第八篇:【AI机器学习入门与实战】用户RFM模型聚类分层实战
🔥 第九篇:【AI机器学习入门与实战】使用OpenCV识别滑动验证码案例
🔥 第十篇:【AI机器学习入门与实战】CNN卷积神经网络识别图片验证码案例
未完待续…

要落地一个机器学习的项目,是有章可循的,通过这六个步骤,小白也能搞定机器学习。

看我闪电六连鞭!🤣

机器学习实战六步法之训练模型、优化模型、部署模型(七)

训练模型

当确定好机器学习算法之后,就可以通过训练数据集中的特征和标签,根据样本数据的损失来拟合函数(模型),来获得最优的模型参数来建立模型。

拟合模型是指通过训练数据集来找到一个能够最好地描述数据之间关系的函数。通俗的说,就是让机器学习算法学习输入数据与输出数据之间的关系,并生成一个可以对新数据进行预测的模型。

所谓损失函数就是模型对数据预测的准确程度,损失越小预测的结果更精准。

机器学习实战六步法之训练模型、优化模型、部署模型(七)

机器学习每训练一次,都会计算损失,逐渐减小训练集上的损失的过程,就是寻找最优模型参数的过程。(注意这里是模型内部的参数

需要注意的是,过度拟合训练数据集可能导致模型在新数据上的性能表现不佳,因此需要进行适当的模型选择和调整,以避免过拟合和欠拟合等问题。

机器学习实战六步法之训练模型、优化模型、部署模型(七)

过拟合(Overfitting)是指机器学习模型在训练数据上表现良好,但在测试数据上表现较差的现象。换句话说,过拟合是指模型在训练数据上过度拟合,导致其不能很好地泛化到测试数据和实际数据中。

过拟合其实就是降低了模型的泛化能力。

评估、优化模型

训练模型是算法寻找最优的模型的内部参数。而评估和优化模型就是在验证集或测试集上进行模型效果评估的过程中,对模型的外部参数(超参数)进行优化。超参数,是指在模型训练之前需要设置的参数,用于控制模型结构和训练过程中的一些超参数。

常用的一些超参数包括:神经网络的层数、学习速率、优化器等,这些超参数的选择会影响模型的复杂度和性能,因此需要进行调整和优化以获得更好的模型性能。

如何评估模型优劣?

机器学习工具包(如 scikit-learn)中都会提供常用的工具和指标,对验证集和测试集进行评估,进而计算当前的误差。比如 R2 或者 MSE指标,就可以用于评估回归分析模型的优劣。

模型效果不好怎么办?

如果模型的评估分数不理想,那我们就要调整模型的超参数,来重新训练模型。如果怎么调整都不理想的话,那就要考虑更换算法,可能是算法选择有问题。

部署模型

当模型经过评估和优化之后满足业务诉求,之后就可以部署模型了。部署模型就是将训练好的模型应用于生产环境当中。部署的时候通常还要考虑到模型的性能、可靠性、安全性、扩展性和可维护性。

机器学习实战六步法之训练模型、优化模型、部署模型(七)

在机器学习中,部署模型是将训练好的模型应用于实际生产环境中的一个重要步骤。部署模型需要考虑多个因素,包括模型的性能、可靠性、安全性、扩展性和可维护性等。以下是几种常见的部署模型的方法:

  1. REST API:使用REST API是一种常见的模型部署方式。将模型封装成一个RESTful API,客户端可以通过HTTP请求将数据发送到API,获取模型的预测结果。这种方法可以适用于多种编程语言和框架,并且具有较好的可扩展性和可维护性。例如,TensorFlow Serving就是一种开源的模型服务器,可以将TensorFlow模型部署为REST API

  2. Docker容器:使用Docker容器是一种常见的轻量级部署方式。将模型和运行所需的依赖项打包成一个Docker镜像,可以方便地部署到云端或本地环境中。这种方法具有较好的可移植性和可扩展性,可以快速部署和更新模型。例如,Google Cloud AI Platform就支持将模型部署为Docker容器。

  3. 服务器端less计算:使用服务器端less计算是一种新兴的部署方式。将模型部署到云端的服务器端less计算平台上,可以根据实际请求的工作负载自动扩展和缩减计算资源,以满足应用程序的需要。这种方法具有较低的成本和更好的弹性,可以快速响应高并发的请求。例如,AWS Lambda就是一种支持部署无服务器函数的平台。

  4. 嵌入式设备:使用嵌入式设备是一种常见的物联网场景下的部署方式。将模型部署到嵌入式设备上,可以在本地对数据进行实时预测,而无需将数据发送到云端进行处理。这种方法具有较低的延迟和更好的隐私保护,适用于需要在边缘设备上进行实时推理的场景。例如,TensorFlow Lite就是一种支持在移动设备和嵌入式设备上进行模型部署的框架。

总之,在机器学习中,部署模型需要根据具体的场景和需求选择合适的部署方式,并考虑模型的性能、可靠性、安全性、扩展性和可维护性等因素。需要注意的是,在部署模型之前,需要对模型进行充分的测试和评估,以确保模型的质量和可靠性。

REST API常用开源框架:

在机器学习中,将模型封装成REST API的开源框架有很多。以下是几个常用的开源框架:

  1. TensorFlow ServingTensorFlow Serving是由Google开发的一个开源的模型服务器,可以将TensorFlow模型部署为REST API,支持多种模型格式和网络协议,具有较好的性能和可扩展性。使用TensorFlow Serving可以轻松部署和管理大规模的机器学习模型,例如在生产环境中进行图像分类、语音识别等任务。

    https://github.com/tensorflow/serving

  2. PyTorch LightningPyTorch Lightning是一个基于PyTorch的高级深度学习框架,提供了一系列高级抽象和功能,帮助用户快速构建和训练模型。其中包括一些用于部署模型的工具,例如将模型封装为REST API的接口。使用PyTorch Lightning可以快速构建、训练和部署复杂的深度学习模型,并支持多种部署方式,例如云端部署、边缘设备部署等。

    https://www.pytorchlightning.ai/index.html

  3. DjangoDjango是一个基于PythonWeb应用程序框架。Django框架采用了MTV(Model-Template-View)的设计模式,通过模型层、视图层和模板层的分离,使得开发者可以更加方便地进行Web应用程序的开发和管理。Django框架是一个非常强大、灵活和易用的Web应用程序框架,具有良好的安全性、可扩展性和可维护性,适用于各种规模的Web应用程序的开发和管理。并且社区很活跃,可以算是Java中的Spring了。

    https://www.djangoproject.com/

  4. FastAPIFastAPI是一个基于Python的高性能Web框架,具有快速、易用、自动文档化等特点。通过FastAPI框架,我们可以快速将机器学习模型部署为REST API,并支持自动化文档生成、类型注释和数据验证等功能。FastAPI框架具有非常好的性能和可扩展性,适用于大规模的机器学习模型部署。

    https://fastapi.tiangolo.com/

将机器学习模型封装成REST API是一种常见的部署模型的方式,可以方便地进行模型调用和管理。以上是一些常用的开源框架,可以根据具体的需求和场景选择合适的框架进行使用。


🎉 如果喜欢这篇文章,点赞👍 收藏关注 ✅ 哦,创作不易,感谢!😀

机器学习实战六步法之训练模型、优化模型、部署模型(七)文章来源地址https://www.toymoban.com/news/detail-482108.html

到了这里,关于机器学习实战六步法之训练模型、优化模型、部署模型(七)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 探索人工智能 | 模型训练 使用算法和数据对机器学习模型进行参数调整和优化

    探索人工智能 | 模型训练 使用算法和数据对机器学习模型进行参数调整和优化

    模型训练是指 使用算法和数据对机器学习模型进行参数调整和优化 的过程。模型训练一般包含以下步骤:数据收集、数据预处理、模型选择、模型训练、模型评估、超参数调优、模型部署、持续优化。 数据收集是指为机器学习或数据分析任务收集和获取用于训练或分析的数

    2024年02月12日
    浏览(15)
  • 使用 Databricks+Mlflow 进行机器学习模型的训练和部署

    使用 Databricks+Mlflow 进行机器学习模型的训练和部署

    机器学习工作流中存在诸多痛点: 首先,很难对机器学习的实验进行追踪。机器学习算法中有大量可配置参数,在做机器学习实验时,很难追踪到哪些参数、哪个版本的代码以及哪个版本的数据会产生特定的结果。 其次,机器学习实验的结果难以复现。没有标准的方式来打

    2024年02月02日
    浏览(10)
  • 机器学习实战8-基于XGBoost和LSTM的台风强度预测模型训练与应用

    机器学习实战8-基于XGBoost和LSTM的台风强度预测模型训练与应用

    大家好,我是微学AI,今天给大家介绍一下机器学习实战8-基于XGBoost和LSTM的台风强度预测模型训练与应用,今年夏天已经来了,南方的夏天经常会有台风登陆,给人们生活带来巨大的影响,本文主要基于XGBoost模型和长短期记忆(LSTM)模型对台风强度进行了预测。通过具体的代码

    2024年02月13日
    浏览(9)
  • 机器学习——python训练CNN模型实战(傻瓜式教学,小学生都可以学会)代码开源

    ​ 第一章 python训练线性模型实战 第二章 python训练决策树模型实战 第三章 python训练神经网络模型实战 第四章 python训练支持向量机模型实战 第五章 python训练贝叶斯分类器模型实战 第六章 python训练集成学习模型实战 第七章 python训练聚类模型实战 第八章 python训练KNN模

    2024年02月04日
    浏览(9)
  • 精华整理几十个Python数据科学、机器学习、深度学习、神经网络、人工智能方面的核心库以及详细使用实战案例,轻松几行代码训练自己的专有人工智能模型

    精华整理几十个Python数据科学、机器学习、深度学习、神经网络、人工智能方面的核心库以及详细使用实战案例,轻松几行代码训练自己的专有人工智能模型

    精华整理几十个Python数据科学、机器学习、深度学习、神经网络、人工智能方面的核心库以及详细使用实战案例,轻松几行代码训练自己的专有人工智能模型。 机器学习 人工智能的核心,是使计算机具有智能的根本途径。机器学习专注于算法,允许机器学习而不需要编程,

    2024年01月25日
    浏览(37)
  • 【如何训练一个中英翻译模型】LSTM机器翻译模型部署(三)

    【如何训练一个中英翻译模型】LSTM机器翻译模型部署(三)

    【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码(一) 【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二) 【如何训练一个中英翻译模型】LSTM机器翻译模型部署(三) 【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四) 模型部

    2024年02月15日
    浏览(7)
  • 机器学习——训练模型

    y ^ = h Θ ( x ) = Θ ∗ x 其中 Θ 是模型的参数向量,其中包括偏置项 Θ 0 和特征权重 Θ 1 至 Θ n x 是实例的特征向量,包括从 x 0 至 x n , x 0 始终为 0 Θ ∗ x 是向量 Θ 与 x 点积 h Θ 是假设函数,使用模型参数 Θ widehat{y} = h_{Theta}(x) = Theta*x \\\\其中Theta是模型的参数向量,其中包括

    2024年02月07日
    浏览(14)
  • 【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四)

    【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四)

    系列文章 【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码(一) 【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二) 【如何训练一个中英翻译模型】LSTM机器翻译模型部署(三) 【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四

    2024年02月15日
    浏览(8)
  • 【如何训练一个中英翻译模型】LSTM机器翻译模型部署之ncnn(python)(五)

    【如何训练一个中英翻译模型】LSTM机器翻译模型部署之ncnn(python)(五)

    系列文章 【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码(一) 【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二) 【如何训练一个中英翻译模型】LSTM机器翻译模型部署(三) 【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四

    2024年02月15日
    浏览(9)
  • 深度学习1:通过模型评价指标优化训练

    深度学习1:通过模型评价指标优化训练

    在深度学习和机器学习领域,模型评价指标用于衡量训练得到的模型在处理数据时的性能和效果。常见的模型评价指标包括: 准确率(Accuracy): 准确率是最直观和常用的评价指标之一,表示分类正确的样本数占总样本数的比例。然而,在不平衡数据集中,准确率可能会产生

    2024年02月12日
    浏览(8)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包