深度学习CV方向学习笔记5 —— 通道注意力机制

这篇具有很好参考价值的文章主要介绍了深度学习CV方向学习笔记5 —— 通道注意力机制。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1 问题:MobileNet 中的注意力机制

2 SE 通道注意力机制

2.1 SE 通道注意力机制的定义与作用

2.2 SE过程: Squeeze + Excitation + Scale

3 其他通道注意力机制

4 参考链接


1 问题:MobileNet 中的注意力机制

 问题描述:MobileNet 中使用了通道注意力机制,是如何实现的?CNN中还有哪些 Attention?

2 SE 通道注意力机制

 2.1 SE 通道注意力机制的定义与作用

 SE注意力机制,通过自动学习的方式,使用另外一个新的神经网络,获取到特征图的每个通道的重要程度,并赋值权重,从而让神经网络关注权重高的特征通道。

 作用为,提升对当前任务有用的特征图的通道,并抑制对当前任务用处不大的特征通道。同时,全连接FC网络根据loss损失来自动学习特征权重。

 2.2 SE过程: Squeeze + Excitation + Scale

SE :Squeeze + Excitation + Scale

① 压缩Squeeze

 通过平均池化,将特征图合并压缩,从 H × W × channel,变为 1 × 1 × channel,后者的一个1×1就获得了原始特征图中 H × W 的感受野,

② 激发Excitation

 进行FC全连接,每个通道都生成一个权值,并归一化,同时也是 1 × 1 × channel

③ 还原Scale

 将原始图像乘以权值矩阵,[h,w,c]×[1,1,c] ==> [h,w,c]

3 其他通道注意力机制

 除此之外,还有 ECA、CBAM

① ECA

 是对SE的优化,由于SE第二层Excitation是以个FC层,运算量大,所以用1×1的卷积层代替FC层,降低参数量。

 与SE不同之处在于下图标注处,同时,也能通过 1×1 的卷积层实现各通道间的信息交互。

深度学习CV方向学习笔记5 —— 通道注意力机制

② CBAM:Convolutional Block Attention Module

 传统的通道注意力机制+空间注意力机制,是 channel(通道) + spatial(空间) 的统一

 将通道权重和输入特征图相乘后再送入空间注意力机制,将归一化后的空间权重和空间注意力机制的输入特征图相乘,得到最终加权后的特征图。

 即对两个Attention进行串联,channel 在前,spatial在后。

深度学习CV方向学习笔记5 —— 通道注意力机制

4 参考链接

【深度学习】(8) CNN中的通道注意力机制(SEnet、ECAnet),附Tensorflow完整代码_立Sir的博客-CSDN博客_通道注意力机制各位同学好,今天和大家分享一下attention注意力机制在CNN卷积神经网络中的应用,重点介绍三种注意力机制,及其代码复现。在我之前的神经网络专栏的文章中也使用到过注意力机制,比如在MobileNetV3、EfficientNet网络中都是用了SE注意力机制,感兴趣的可以看一下:https://blog.csdn.net/dgvv4/category_11517910.html。那么今天就和大家来聊一聊注意力机制。1. 引言注意力机制源于对人类视觉的研究。在认知科学中,由于信息处理的瓶颈,人类https://blog.csdn.net/dgvv4/article/details/123572065 【深度学习】(1) CNN中的注意力机制(SE、ECA、CBAM),附Pytorch完整代码_立Sir的博客-CSDN博客_se注意力机制大家好,今天和各位分享一下如何使用 Pytorch 构建卷积神经网络中的各种注意力机制,如:SENet,ECANet,CBAM。注意力机制的原理 和 TensorFlow2 的实现方式可以看我下面两篇博文:SENet、ECANet:https://blog.csdn.net/dgvv4/article/details/123572065DANet、CBAM:https://blog.csdn.net/dgvv4/article/details/123888724SE注意力机制(Squeeze-and-Exchttps://blog.csdn.net/dgvv4/article/details/125112972 SeNet || 注意力机制——源代码+注释_仙女不扎马尾.的博客-CSDN博客_senet代码文章目录1 SeNet介绍2 SeNet优点3 Se模块的具体介绍4 完整代码1 SeNet介绍SENet是Squeeze-and-Excitation Networks的简称,由Momenta公司所作并发于2017CVPR,论文中的SENet赢得了ImageNet最后一届(ImageNet 2017)的图像识别冠军SENet主要是学习了channel之间的相关性,筛选出了针对通道的注意力,稍微增加了一点计算量,但是效果比较好。通过学习的方式来自动获取到每个特征通道的重要程度,然后依照这个重要程度https://blog.csdn.net/weixin_42521185/article/details/124330333 【注意力机制】CBAM详解_姚路遥遥的博客-CSDN博客_cbam注意力论文题目:《CBAM: Convolutional Block Attention Module》论文地址:https://arxiv.org/pdf/1807.06521.pdf1. 前言       论文(2018年)提出了一种轻量的注意力模块( CBAM,Convolutional Block Attention Module ),可以在通道和空间维度上进行 Attention 。论文在 ResNet 和 MobileNethttps://blog.csdn.net/Roaddd/article/details/114646354 CBAM:卷积注意力机制模块 - 知乎摘要本文提出了卷积注意力模块(CBAM),这是一种用于前馈卷积神经网络的简单而有效的注意力模块。 给定一个中间特征图,CBAM模块会沿着两个独立的维度(通道和空间)依次推断注意力图,然后将注意力图与输入特征…https://zhuanlan.zhihu.com/p/101590167文章来源地址https://www.toymoban.com/news/detail-483113.html

到了这里,关于深度学习CV方向学习笔记5 —— 通道注意力机制的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习】注意力机制

    注意力机制(Attention Mechanism)是一种在计算机科学和机器学习中常用的技术,可以使模型在处理序列数据时更加准确和有效。在传统的神经网络中,每个神经元的输出只依赖于前一层的所有神经元的输出,而在注意力机制中,每个神经元的输出不仅仅取决于前一层的所有神经

    2024年02月02日
    浏览(41)
  • 【深度学习注意力机制系列】—— SENet注意力机制(附pytorch实现)

    深度学习中的注意力机制(Attention Mechanism)是一种模仿人类视觉和认知系统的方法,它允许神经网络在处理输入数据时集中注意力于相关的部分。通过引入注意力机制,神经网络能够自动地学习并选择性地关注输入中的重要信息,提高模型的性能和泛化能力。 卷积神经网络

    2024年02月14日
    浏览(39)
  • 【深度学习注意力机制系列】—— ECANet注意力机制(附pytorch实现)

    ECANet(Efficient Channel Attention Network) 是一种 用于图像处理任务的神经网络架构,它在保持高效性的同时,有效地捕捉图像中的通道间关系,从而提升了特征表示的能力 。ECANet通过引入通道注意力机制,以及在卷积层中嵌入该机制,取得了优越的性能。本文将对ECANet的核心思

    2024年02月13日
    浏览(49)
  • 【深度学习注意力机制系列】—— SCSE注意力机制(附pytorch实现)

    SCSE注意力模块 (来自论文[1803.02579] Concurrent Spatial and Channel Squeeze Excitation in Fully Convolutional Networks (arxiv.org))。其对SE注意力模块进行了改进,提出了 cSE、sSE、scSE 三个模块变体,这些模块可以 增强有意义的特征,抑制无用特征 。今天我们就分别讲解一下这三个注意力模块。

    2024年02月13日
    浏览(56)
  • 【深度学习注意力机制系列】—— CBAM注意力机制(附pytorch实现)

    CBAM(Convolutional Block Attention Module) 是一种用于增强卷积神经网络(CNN)性能的注意力机制模块。它由Sanghyun Woo等人在2018年的论文[1807.06521] CBAM: Convolutional Block Attention Module (arxiv.org)中提出。CBAM的主要目标是 通过在CNN中引入通道注意力和空间注意力 来提高模型的感知能力,从

    2024年02月13日
    浏览(40)
  • 【深度学习注意力机制系列】—— SKNet注意力机制(附pytorch实现)

    SKNet(Selective Kernel Network) 是一种用于图像分类和目标检测任务的深度神经网络架构,其核心创新是 引入了选择性的多尺度卷积核(Selective Kernel)以及一种新颖的注意力机制 ,从而在不增加网络复杂性的情况下提升了特征提取的能力。SKNet的设计旨在 解决多尺度信息融合的

    2024年02月13日
    浏览(52)
  • 深度学习——常见注意力机制

    SENet属于通道注意力机制。2017年提出,是imageNet最后的冠军 SENet采用的方法是对于特征层赋予权值。 重点在于如何赋权 1.将输入信息的所有通道平均池化。 2.平均池化后进行两次全连接,第一次全连接链接的神经元较少,第二次全连接神经元数和通道数一致 3.将Sigmoid的值固定

    2024年02月14日
    浏览(33)
  • 深度学习笔记之Seq2seq(二)基于Seq2seq注意力机制的动机

    上一节介绍了 Seq2seq text{Seq2seq} Seq2seq 网络常用的基本结构以及在 机器翻译 任务中,关于 目标函数 与 预测概率 的描述。本节依然以 机器翻译 任务为例,对 Seq2seq text{Seq2seq} Seq2seq 中的 注意力机制 ( Attention ) (text{Attention}) ( Attention ) 进行描述。 关于 机器翻译 任务的 Seq2

    2024年02月09日
    浏览(48)
  • 深度学习(5)---自注意力机制

     1. 一般情况下在简单模型中我们输入一个向量,输出结果可能是一个数值或者一个类别。但是在复杂的模型中我们一般会输入一组向量,那么输出结果可能是一组数值或一组类别。  2. 一句话、一段语音、一张图等都可以转换成一组向量。  3. 输入一组向量,一般输出结

    2024年01月23日
    浏览(44)
  • 【深度学习实验】注意力机制(一):注意力权重矩阵可视化(矩阵热图heatmap)

    ​    注意力机制 作为一种模拟人脑信息处理的关键工具,在深度学习领域中得到了广泛应用。本系列实验旨在通过理论分析和代码演示,深入了解注意力机制的原理、类型及其在模型中的实际应用。 本文将介绍将介绍 注意力权重矩阵可视化 (矩阵热图heatmap)   本系

    2024年02月05日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包