几个实用数据可视化图表Python代码!

这篇具有很好参考价值的文章主要介绍了几个实用数据可视化图表Python代码!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

可视化是一种方便的观察数据的方式,可以一目了然地了解数据块。我们经常使用柱状图、直方图、饼图、箱图、热图、散点图、线状图等。这些典型的图对于数据可视化是必不可少的。除了这些被广泛使用的图表外,还有许多很好的却很少被使用的可视化方法,这些图有助于完成我们的工作,下面我们看看有那些图可以进行。

1、平行坐标图

Parallel Coordinate

我们最多可以可视化 3 维数据。但是我们有时需要可视化超过 3 维的数据才能获得更多的信息。我们经常使用 PCA 或 t-SNE 来降维并绘制它。在降维的情况下,可能会丢失大量信息。在某些情况下,我们需要考虑所有特征, 平行坐标图有助于做到这一点。

几个实用数据可视化图表Python代码!

鸢尾花数据集的平行坐标图

上面的图片。横线(平行轴)表示鸢尾花的特征(花瓣长、萼片长、萼片宽、花瓣宽)。分类是Setosa, Versicolor和Virginica。上图将该物种编码为Setosa→1,Versicolor→2,Virginica→3。每个平行轴包含最小值到最大值(例如,花瓣长度从1到6.9,萼片长度从4.3到7.9,等等)。例如,考虑花瓣长度轴。这表明与其他两种植物相比,濑蝶属植物的花瓣长度较小,其中维珍属植物的花瓣长度最高。

有了这个图,我们可以很容易地获得数据集的总体信息。数据集是什么样子的?让我们来看看。

几个实用数据可视化图表Python代码!

让我们用Plotly Express库[1]可视化数据。Plotly库提供了一个交互式绘图工具。

import plotly.express as px df = px.data.iris() fig = px.parallel_coordinates(df, color="species_id", labels={"species_id": "Species", "sepal_width": "Sepal Width", "sepal_length": "Sepal Length", "petal_width": "Petal Width", "petal_length": "Petal Length", }, color_continuous_scale=px.colors.diverging.Tealrose, color_continuous_midpoint=2) fig.show()

几个实用数据可视化图表Python代码!

除了上图以外我们还可以使用其他库,如pandas、scikit-learn和matplotlib来绘制并行坐标。

六边形分箱图

Hexagonal Binning

六边形分箱图是一种用六边形直观表示二维数值数据点密度的方法。

 ax = df.plot.hexbin(x='sepal_width', y='sepal_length',

                     gridsize=20,color='#BDE320')

几个实用数据可视化图表Python代码!

Pandas 允许我们绘制六边形 binning [2]。我已经展示了用于查找 sepal_width 和 sepal_length 列的密度的图。文章来源地址https://www.toymoban.com/news/detail-483728.html

到了这里,关于几个实用数据可视化图表Python代码!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • Python 数据可视化教程 - 如何使用 pyecharts 绘制多条折线图表

    部分数据来源: ChatGPT   引言         本文主要介绍如何使用 Python 中的 pyecharts 库,绘制多条折线图表。在本例中,我们将展示各国的 COVID-19 确诊人数数据。 1、首先,我们需要导入必要的库: 其中, json  库用于解析 JSON 数据, pyecharts  库用于绘图, TitleOpts 、 Lege

    2024年02月09日
    浏览(11)
  • 微博数据可视化分析:利用Python构建信息图表展示话题热度

    微博数据可视化分析:利用Python构建信息图表展示话题热度

    1. 引言 随着社交媒体的迅速发展,微博已成为人们交流观点、表达情感的重要平台之一。微博评论数据蕴含着丰富的信息,通过对这些数据进行分析和可视化,我们可以深入了解用户对特定话题的关注程度和情感倾向。本文将介绍如何利用Python进行微博评论数据的准备、探索

    2024年02月20日
    浏览(10)
  • 【Unity 实用插件篇】| 可视化图表插件XCharts (折线图、柱状图、饼图等)详细教学
  • 【Unity 实用工具篇】✨| 可视化图表插件XCharts (折线图、柱状图、饼图等)详细教学
  • Python3,一次掌握这些数据可视化图表技能,老板不给涨薪都不好意思。

    Python3,一次掌握这些数据可视化图表技能,老板不给涨薪都不好意思。

    小屌丝 :鱼哥, 老板让我把数据整理成视图。 小鱼 :那你就整啊。 小屌丝 :我整的不好看。 小鱼 :看 内(shen)容(cai)的时候,要什么颜值。 小屌丝 :那不行,老板说了,如果我这次把图表整好看了,给我涨薪2K。 小鱼 :我去~ 你老板这是考验你啊。 小屌丝 :所以…鱼哥

    2024年02月05日
    浏览(6)
  • 小程序数据可视化:使用图表和可视化工具展示数据

    小程序数据可视化:使用图表和可视化工具展示数据

    在当今信息爆炸的时代,数据无疑是最珍贵的资源之一。然而,海量的数据如果不加以整理和展示,很难从中获取有价值的信息。这时候,数据可视化就发挥了重要作用,它能够通过图表和可视化工具将复杂的数据转化为直观的视觉形式,帮助人们更好地理解和分析数据。本

    2024年02月11日
    浏览(15)
  • 数据可视化:图表绘制详解

    数据可视化是一种将抽象的数字和数据转化为直观图形的技术,使数据的模式、趋势和关系一目了然。本文将详细介绍如何绘制各种类型的图表,包括柱状图、折线图、饼图、散点图和热力图等。 第一部分:图表类型和选择 1. 柱状图 柱状图是用于比较类别数据的常见图表。

    2024年02月12日
    浏览(10)
  • python数学建模--绘图动态可视化图表

    python数学建模--绘图动态可视化图表

    本博客的灵感来源自笔者最近研究的最优化问题 在使用 模拟退火算法、遗传算法 求二元函数最值的过程中,虽然笔者已经能够通过算法得到不错的结果,但是笔者还是比较好奇算法的执行过程中,变量是怎样更新的,显然可视化是一种很好的方法 在上一篇博客【python数学建

    2024年02月06日
    浏览(9)
  • ECharts数据可视化--常用图表类型

    ECharts数据可视化--常用图表类型

    目录 一.柱状图 1.基本柱状图  1.1最简单的柱状图 ​编辑   1.2多系列柱状图   1.3柱状图的样式          (1)柱条样式                  (2)柱条的宽度和高度         (3)柱条间距         (4)为柱条添加背景颜色 ​编辑 2.堆叠柱状图 3.动态排序柱状图 4.阶梯

    2024年02月05日
    浏览(10)
  • 数据可视化——使用echars图表展示

    数据可视化——使用echars图表展示

    目录 1、前言 2、解决方案 2.1、echars(前端等组件库) 2.2、PPT等其他软件工具 2.3、使用flourish等在线数据可视化制作平台 2.4、自己用代码实现 有一个小作业,需要自己收集一组数据,然后进行数据可视化,并且对数据进行分析 对此,有多种解决方案,纠结一会后,最终我选

    2024年02月07日
    浏览(13)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包