【计算机视觉】最近跑实验的感悟:大模型训练太难了!

这篇具有很好参考价值的文章主要介绍了【计算机视觉】最近跑实验的感悟:大模型训练太难了!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、大模型训练太难了

这里大模型训练特指基座大模型的从0开始训练,不包括在2000条数据上SFT这样的小任务。

有人说大模型嘛,简单,给我卡就行,等到老板真给你买来了1000张卡你就知道有多难了,老板说,小王,卡买来了,三个月给我搞出来。

然后你发现,就算有人把正确的代码,数据,参数全告诉你,你也就够完整跑一次把它训练出来,万一中间服务器停电一次,完蛋交不了活儿了。

更别提你要自己写模型代码,调试,想办法评估模型,根据结果反馈调整实验方向,时间和资源完全不够!

确实,从头开始训练一个大型模型是一项艰巨的任务,需要大量的计算资源、时间和专业知识。以下是一些可能遇到的挑战:

  1. 计算资源:训练大型模型需要大量的计算资源,包括高性能的图形处理单元(GPU)或专用的张量处理单元(TPU)。在没有足够计算资源的情况下,训练过程可能会非常缓慢或无法完成。
  2. 数据准备:训练大型模型需要大规模的数据集,而且数据集的质量对于最终模型的性能至关重要。收集、清理和准备数据可能是一项繁琐的工作,特别是对于特定任务或领域的数据集。
  3. 超参数调整:大型模型通常有很多超参数需要调整,如学习率、批量大小、层数等。找到最佳的超参数组合可能需要进行大量的试验和调优。
  4. 模型设计和调试:设计和实现适合特定任务的模型结构需要深入的专业知识和经验。调试模型中的错误或性能问题可能是一项复杂的任务。
  5. 训练时间:训练大型模型可能需要数天甚至数周的时间,这取决于模型的规模、数据集的大小以及计算资源的可用性。在训练过程中发生中断或错误可能导致需要重新开始训练。
  6. 模型评估和迭代:评估训练出的模型性能是关键的一步,可能需要进行多轮迭代来改进模型。这需要根据评估结果进行调整实验方向和参数设置。

总之,从零开始训练一个大型模型需要面对多个挑战,包括计算资源、数据准备、超参数调整、模型设计和调试、训练时间以及模型评估和迭代。这需要丰富的经验、时间和资源投入,以及对机器学习和深度学习的深入理解。

【计算机视觉】最近跑实验的感悟:大模型训练太难了!

二、大模型的训练有三大难点

  1. 消耗计算资源巨大。
  2. 对数据的数量和数据的质量要求极高。
  3. 很难用技术指标进行评估他的好坏。

在传统的深度学习时代,人们热衷于对网络架构进行各种修改和排列组合,试图通过手动调整来优化模型性能。然而,随着进入大型模型时代,这种方法已经不再奏效。

过去的实验通常在单个V100 GPU上运行,最多需要半天的时间完成。研究人员会在多个GPU上同时尝试多个模型配置,并通过实验结果的观察和评估来调整下一步的方向。

然而,进入大型模型时代后,他们发现这种基于直觉和手动修改的方法行不通了。

首先,进行实验需要数百个A100 80GB GPU,并且还需要准备10TB的数据。同时,数据集必须经过精心清洗,以确保数据的质量。这样的实验设置决定了实验的速度变得非常缓慢。

此外,一个关键问题是,很难确定一个合适的评估指标来衡量模型的好坏。这就像盲目地炒菜,无法确定最终的味道,试验过程中完全是一片模糊。

总而言之,以上提到的三个主要困难因素使得实验变得缓慢、不可靠、困难且结果不确定。大型模型的训练相较于传统的小型模型来说,面临更多的挑战和复杂性。

随着模型规模和复杂度的增加,试错成本也随之增加。这使得手动调整和炼丹的方式逐渐无法满足大规模模型训练的需求,进一步推动了大规模工业化训练的发展。

以META AI训练OPT-175B(对应于GPT-3的规模)为例,他们的经验教训可以提供一些洞见。

他们由一个由5名工程师组成的小组,使用1024张A100(80GB显存)的GPU对175B参数的语言模型进行训练。整个训练过程大约耗时三个月。

根据他们的训练效率预估,在没有发生错误和重启的情况下,使用300B个标记的数据集进行训练将需要大约33天的时间。

这个例子揭示了大规模模型训练的复杂性和资源需求。它需要庞大的计算资源、长时间的训练周期以及大规模高质量的数据集。这些因素使得大规模模型训练成为一个挑战,需要充足的计算资源、高效的算法和合理的时间规划来取得良好的训练效果。

在第一轮训练中,通常会进行初步的训练尝试,这可能涉及多次启动和停止训练过程。在这个阶段,根据经验和假设,会设定模型和训练超参数,并对其进行简单调整。例如,增加权重衰减(weight decay)从0.01到0.1、设置全局梯度范数剪裁为1.0、调整Adam优化器的参数等等。

这些调整是基于观察每个批次的损失结果而进行的。然而,他们发现这些调整实际上没有太大意义,因为他们发现自己的代码存在错误(非常遗憾,在前三次训练中白白浪费了时间)。因此,他们认识到在小规模数据集和模型参数上对代码进行测试是非常重要的。

通过在小规模的数据集和模型参数上进行测试,可以帮助发现和修复代码中的错误,确保代码的正确性。这个阶段的目标是确保训练过程正常运行,并获得可靠的结果,以便在后续的训练中建立在稳固的基础上进行。

在第二轮中,会进行超参数的调整。根据观察和反复实验,确认哪些参数对模型效果更有效。这个过程非常考验观察能力和经验,需要不断地调整和优化参数设置。

第三轮开始了正式的训练,超过一个月的时间已经过去。在训练过程中,仍然观察损失曲线的变化(可能会出现许多尖峰),并不断地调整参数。特别是在Run11.6之后,会反复重新计算相同一段批次数据,观察不同超参数对结果的影响。在Run11.10甚至会更换激活函数,从Gelu改为ReLU。

在第四轮(也可以称为“最后”一轮)中,使用了33天的时间,使用992张80GB显存的A100 GPU,训练了拥有175B参数和300B标记的模型。然而,在这个过程中遇到了许多问题,包括但不限于:GPU掉线、CUDA错误、任务挂起、NCCL错误、代码错误(例如检查点存储问题、损失函数问题)以及训练不稳定的情况。这表明即使拥有丰富的经验、充足的数据集和庞大的硬件资源,训练大型模型仍然充满了各种困难和挑战。

即使像OpenAI这样的组织在训练GPT-4时也面临了巨大的困扰。为了应对这个挑战,他们采用了一些元学习(meta-learning)的方法,利用小型模型的表现来预测更大规模模型的表现。

这种方法在直觉上是可行的,但它确实是一种无奈之举。由于大型模型的训练是极其耗时和资源密集型的,无法进行大规模的试错和优化。因此,利用小型模型的训练结果作为参考来预测大型模型的性能,可以为研究人员提供一些指导和启示。

虽然这种方法可能有一定的效果,但仍然存在预测的不确定性和局限性。毕竟,大型模型具有自身的复杂性和特殊性,无法完全依靠小型模型的结果进行准确预测。因此,即使这是一种权宜之计,仍然需要在实际训练中进行验证和调整,以获得最佳的结果。

三、OpenAI 的一些启发

OpenAI在GPT的发展过程中花费了大量时间和精力,经过反复的实验和探索,才逐步积累了宝贵的经验并取得了突破。这是因为训练大型模型是一个复杂而艰巨的任务,需要经过大量的试错和优化才能取得成功。

至于中文数据方面的问题,确实存在一些挑战。由于中文互联网的特殊性,中文优质语料相对较少,这使得获取高质量的中文数据变得困难。虽然有一些观点认为这是一种甩锅的说法,但实际情况可能更多是技术和资源的限制。OpenAI使用公开获取的中文数据进行训练的能力,可能也取决于他们对数据的处理和利用能力。

目前,即使国内的公司购买了大量难以公开获取的数据,仍然远远落后于OpenAI的进展。这一点确实反映了大型模型时代中,实践经验和训练方法的重要性。拥有能够总结出一套有效的训练方法论的专业人才,以及那些拥有丰富实践经验并完成了大量实验的技术专家,是大型模型时代中最宝贵的资源。相比于硬件设备和时间的成本,人才的贡献往往更具决定性的影响,并且难以替代。文章来源地址https://www.toymoban.com/news/detail-483939.html

到了这里,关于【计算机视觉】最近跑实验的感悟:大模型训练太难了!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机视觉基础知识(十三)--推理和训练

    Supervisied Learning 输入的数据为训练数据; 模型在训练过程中进行预期判断; 判断错误的话进行修正; 直到模型判断预期达到要求的精确性; 关键方法为分类和回归 逻辑回归(Logistic Regression) BP神经网络(Back Propagation Neural Network) Unsupervisied Learning 没有训练数据; 模型基于无标记数据

    2024年02月22日
    浏览(137)
  • 计算机视觉实验五——图像分割

    了解图割操作,实现用户交互式分割,通过在一幅图像上为前景和背景提供一些标记或利用边界框选择一个包含前景的区域,实现分割。 采用聚类法实现图像的分割(K-means方法)。 ①图片准备 博主选择了一张 前景与背景区分明显 的图片,和一张 前景与背景区分不明显 的

    2024年04月15日
    浏览(45)
  • 计算机视觉实验:人脸识别系统设计

    设计 计算机视觉目标识别系统,与实际应用有关(建议:最终展示形式为带界面可运行的系统),以下内容选择其中一个做。 1. 人脸识别系统设计 (1) 人脸识别系统设计(必做):根据课堂上学习的理论知识(包括特征提取、分类器设计),设计一个人脸识别系统,该系统具

    2024年02月14日
    浏览(51)
  • 【计算机视觉】YOLO 入门:训练 COCO128 数据集

    我们以最近大热的YOLOv8为例,回顾一下之前的安装过程: 这里选择训练的数据集为:COCO128 COCO128是一个小型教程数据集,由COCOtrain2017中的前128个图像组成。 在YOLO中自带的coco128.yaml文件: 1)可选的用于自动下载的下载命令/URL, 2)指向培训图像目录的路径(或指向带有培训

    2024年02月10日
    浏览(41)
  • 【计算机视觉中的 GAN 】如何稳定GAN训练(3)

        在上 一篇文章 中,我们达到了理解未配对图像到图像翻译的地步。尽管如此,在实现自己的超酷深度GAN模型之前,您必须了解一些非常重要的概念。如本 文所提的GAN模型新成员的引入:Wasserstein distance,boundary equilibrium 和 progressively growing GAN三个方面。

    2024年02月15日
    浏览(40)
  • 计算机视觉实验:图像处理综合-路沿检测

    目录 实验步骤与过程 1. 路沿检测方法设计 2. 路沿检测方法实现 2.1 视频图像提取 2.2 图像预处理 2.3 兴趣区域提取 2.4 边缘检测 ​​​​​​​2.5 Hough变换 ​​​​​​​2.6 线条过滤与图像输出 3. 路沿检测结果展示 4. 其他路沿检测方法 实验结论或体会 实验内容: 针对

    2024年02月14日
    浏览(44)
  • 计算机视觉——实验一:图像直方图均衡

    实验目的: 1.熟悉图像的表示及基本元素、通道操作; 2.掌握基本灰度图像变换方法; 3.掌握OpenCV计算机视觉库; 实验要求: 1. 实验提交文件为实验报告和相关程序代码,以压缩包的形式提交,命名规则为“学号数字+姓名+Task1”,如2023154099张三Task1; 2. 所有素材和参考

    2024年01月21日
    浏览(52)
  • 【计算机视觉|生成对抗】改进的生成对抗网络(GANs)训练技术

    本系列博文为深度学习/计算机视觉论文笔记,转载请注明出处 标题: Improved Techniques for Training GANs 链接:[1606.03498v1] Improved Techniques for Training GANs (arxiv.org) 本文介绍了一系列应用于生成对抗网络(GANs)框架的新的架构特性和训练过程。我们专注于GAN的两个应用领域:半监督

    2024年02月13日
    浏览(48)
  • Kears-4-深度学习用于计算机视觉-使用预训练的卷积网络

    本篇学习记录主要包括:《Python深度学习》的第5章(深度学习用于计算机视觉)的第3节(使用预训练的卷积神经网络)内容。 相关知识点: 预训练模型的复用方法; 预训练网络 (pretrained network) 是一个保存好的网络,之前已经在大型数据集上完成训练。理论上数据集足够大

    2024年02月11日
    浏览(42)
  • 【计算机视觉】YOLOv8的测试以及训练过程(含源代码)

    YOLOv8是来自Ultralytics的最新的基于YOLO的对象检测模型系列,提供最先进的性能。 利用以前的 YOLO 版本,YOLOv8模型更快、更准确,同时为训练模型提供统一框架,以执行: 物体检测 实例分割 图像分类 Ultralytics为YOLO模型发布了一个全新的存储库。它被构建为 用于训练对象检测

    2024年02月13日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包