聚类分析(文末送书)

这篇具有很好参考价值的文章主要介绍了聚类分析(文末送书)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

聚类分析是什么

一、 定义和数据类型

聚类应用

聚类分析方法的性能指标

聚类分析中常用数据结构有数据矩阵和相异度矩阵

聚类分析方法分类

二、K-means聚类算法

划分聚类方法对数据集进行聚类时包含三个要点

K-Means算法流程:

K-means聚类算法的特点

三、k-medoids算法

基本思想

K-medoids算法特点

四、送书活动

五、抽奖规则


聚类分析是什么

 聚类分析是一种寻找数据之间内在结构的技术,将数据对象的集合分组为由类似的对象组成的多个类的分析过程。聚类把全体数据实例组织成一些相似组,而这些相似组被称作簇。处于相同簇中的数据实例彼此相同,处于不同簇中的实例彼此不同。聚类技术通常又被称为无监督学习,与监督学习不同的是,在簇中那些表示数据类别的分类或者分组信息是没有的。

一、 定义和数据类型

聚类应用

  • 市场营销: 帮助营销人员帮他们发现顾客中独特的群组,然后利用他们的知识发展目标营销项目
  • 土地利用: 在土地观测数据库中发现相似的区域
  • 保险: 识别平均索赔额度较高的机动车辆保险客户群组
  • 城市规划: 通过房屋的类型、价值、地理位置识别相近的住房
  • 地震研究: 沿着大陆断层聚类地震的震中

聚类分析方法的性能指标

  • 可扩展性
  • 自适应性
  • 鲁棒性
  • 可解释性 

聚类分析中常用数据结构有数据矩阵和相异度矩阵

聚类分析(文末送书)

 聚类分析(文末送书)

聚类分析方法分类

基于划分、基于分层、基于密度、基于网络、基于模型

二、K-means聚类算法

划分聚类方法对数据集进行聚类时包含三个要点

选定某种距离作为数据样本间的相似性度量
选择评价聚类性能的准则函数
选择某个初始分类,之后用迭代的方法得到聚类结果,使得评价聚类的准则函数取得最优值

标准测试函数:

聚类分析(文末送书)

 均值:

聚类分析(文末送书)

K-Means算法流程:

输入:包含n个对象的数据集聚类个数k,最小误差e
输出:满足方差最小标准的k个聚类
①从n个数据对象中随机选出k个对象作为初始聚类的中心
②将每个类簇中的平均值作为度量基准,重新分配数据库中的
数据对象
③计算每个类簇的平均值,更新平均值
④循环(2)(3),直到每个类簇不在发生变化或者平均误差小于e

K-means聚类算法的特点

优点
简单、快速
算法尝试找出使平方误差函数值最小的k个划分据集
对处理大数据集,该算法是相对可伸缩的和高效率的

缺点

不适合于发现非凸面形状的簇,或者大小差别很大的簇

要求用户必须事先给出要生成的簇的数目K

对于“噪声”和孤立点数据敏感

对初值敏感

三、k-medoids算法

基本思想

k-medoids算法是一种聚类算法,与k-means算法相似,但它选择的中心点是簇中实际的数据点,而不是像k-means那样选择簇中心点的均值。

其基本思想是,给定一个数据集和聚类数k,随机选择k个点作为初始中心点,然后迭代以下两个步骤直到收敛:

1. 对于每个数据点,计算其与各中心点的距离,并将其划分到距离最近的簇中。

2. 对于每个簇,选择一个代表点(即中心点)来替换原来的中心点,使得代表点到簇中其他点的距离之和最小。

这个过程是一种优化过程,每次迭代会使得簇内的样本距离代表点更近,而簇间的距离更远,最终达到收敛。

与k-means算法不同,k-medoids算法不是适用于高维数据集,因为在高维空间中,欧几里得距离的性质会失效,需要使用更加复杂的距离度量方式。

K-medoids算法特点

优点:
1. 鲁棒性强:K-medoids算法采用一组代表性点(medoids)代表聚类簇,因此在数据噪声较大或者存在离群点的情况下,比k-means更加鲁棒。
2. 可解释性好:由于medoids是实际存在于数据集中的点,所以聚类结果更容易被理解和解释。
3. 适用于非凸数据集:相比k-means算法只适用于凸数据集,K-medoids算法可以处理非凸数据集的聚类问题。

缺点:
1. 运算速度慢:由于K-medoids算法需要计算每个点到medoid的距离,因此计算复杂度较高,时间复杂度为O(K*N^2),其中K为聚类簇数,N为数据点数。
2. 对初始值敏感:K-medoids算法的聚类结果取决于初始medoid的选择,因此需要多次随机初始化来获得更好的聚类结果。
3. 不适用于大数据分析:由于计算复杂度较高,K-medoids算法不适合处理大数据集。

四、送书活动

 618,清华社 IT BOOK 多得图书活动开始啦!活动时间为 2023 年 6 月 7 日至 6 月 18 日,清华
社为您精选多款高分好书,涵盖了 C++、Java、Python、前端、后端、数据库、算法与机器学习等多
个 IT 开发领域,适合不同层次的读者。全场 5 折,扫码领券更有优惠哦!快来京东点击链接 IT BOOK
多得(或扫描京东二维码)查看详情吧!

聚类分析(文末送书)

详情了解:《Python从入门到精通(微课精编版)(软件开发视频大讲堂)》(前沿科技)【摘要 书评 试读】- 京东图书

聚类分析(文末送书)

五、抽奖规则

   活动时间: 截止到2023-06-18 12: 00
   参与方式: 点赞、收藏本文章,并评论
   抽奖时间: 2023.06.18
   公布时间: 2023.06.20
   通知方式: 私信和动态通知(一共50本书)

获奖名单:

i阿极

不是笨小孩i.

Ja_小浩文章来源地址https://www.toymoban.com/news/detail-484210.html

到了这里,关于聚类分析(文末送书)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【文末送书】AIGC时代的数据分析与可视化

    欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C++、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和技术。搜索关注公粽号 《机器和智能》 发送“刷题宝

    2024年02月16日
    浏览(41)
  • 【Python】数据分析案例:世界杯数据可视化 | 文末送书

    每一场体育赛事都会产生大量数据,这些数据可用于分析运动员、球队表现以及比赛中的亮点。作为分析案例,我们使用T20世界杯的数据进行分析。如果你有兴趣学习如何分析类似T20世界杯这样的体育赛事,本文将为您提供指导。在本文中,我们将使用 Python 来分析 2022年T2

    2024年02月05日
    浏览(54)
  • 大数据:AI大模型对数据分析领域的颠覆(文末送书)

    随着数字化时代的到来,大数据已经成为了各行各业中不可或缺的资源。然而,有效地分析和利用大数据仍然是一个挑战。在这个背景下,OpenAI推出的Code Interpreter正在对数据分析领域进行颠覆性的影响。 如何颠覆数据分析领域?带着这个问题,我们一起来探讨一下。 什么是

    2024年02月11日
    浏览(45)
  • MATLAB数据分析、从算法到实现 (文末送书【北大出版社】)

    从代码到函数,从算法到实战,从问题到应用,由浅入深掌握科学计算方法,高效解决实际问题。 在回归问题中往往存在这样一个问题:并不是每个自变量都对回归问题的求解有益。因此,在进行回归分析时,需要先对自变量进行相关性分析,将不相关的自变量删除。本节以

    2024年02月08日
    浏览(40)
  • 展望AI时代,把握文档图像智能分析与处理的未来(文末送书)

    2023年5月11~14日,中国图象图形大会(CCIG 2023)在苏州举办,谭铁牛院士、赵沁平院士、吴一戎院士、徐宗本院士、胡事民教授、高新波教授确定莅临CCIG 2023大会,并作大会主旨报告。 众多专家学者将齐聚苏州,开启“最强大脑”,为大家带来一场精彩的学术盛宴。大会以“

    2024年02月08日
    浏览(52)
  • 【粉丝福利社】Android应用安全实战:Frida协议分析(文末送书-完结)

    🏆 作者简介,愚公搬代码 🏆《头衔》:华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主,腾讯云内容共创官,掘金优秀博主,51CTO博客专家等。 🏆《近期荣誉》:

    2024年04月09日
    浏览(65)
  • 浅谈什么是 Spring Cloud,快速学习与使用案例(文末送书福利3.0)

    Spring Cloud 是一个用于构建分布式系统的开发工具包,它基于 Spring Framework 提供了一系列的解决方案和工具,用于帮助开发者快速构建和部署云原生应用。Spring Cloud 主要关注的是分布式系统中常见的配置管理、服务注册与发现、熔断器、负载均衡、路由、微服务追踪等问题,

    2024年02月13日
    浏览(42)
  • AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀【文末送书-38】

    在当今数字化和信息化的时代,金融行业正处于巨大的变革之中。随着人工智能(AI)和大数据技术的迅猛发展,金融机构对于数据的处理和分析变得愈发重要。Python作为一种强大的编程语言,以其简洁、灵活、易学的特点,成为了金融数据分析的首选工具之一。而结合AI技术

    2024年03月16日
    浏览(66)
  • 【文末送书】拥抱人工智能

    欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C++、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和技术。关注公粽号 《机器和智能》 回复 “python项目

    2024年02月04日
    浏览(47)
  • 【文末送书】微服务拆分规范

    将 系统的业务功能划分为极小的独立微服务 , 每个微服务只关注于完成某个小的任务 。系统中的单个微服务可以被独立部署和扩展,且各个微服务之间是高内聚、松耦合的。微服务之间采用轻量化通信机制暴露接来实现通信。 那么微服务可以怎么拆分呢? 压力模型简单来

    2024年02月08日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包