NeRF+SLAM论文阅读笔记

这篇具有很好参考价值的文章主要介绍了NeRF+SLAM论文阅读笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

CVPR 2023

Co-SLAM: Joint Coordinate and Sparse Parametric Encodings for Neural Real-Time SLAM

input: RGB-D
contribution:
1.场景表示:多分辨率哈希网格(加速&保留高频特征)
2.编码方式:one-blob(提升未观察到区域的补全能力和一致性)编码方式根据场景表示(hash网格)制定
3.改进关键帧:支持在所有关键帧上执行BA
Related Work
iMap:由于实时性的要求,iMap使用系数采样和减少迭代次数提升效率,造成丢失高频细节&增大误差。
场景表示:如八叉树、哈希/体素网格等虽然可以提升效率,但缺乏MLP固有的平滑性和一致性先验,导致无法填补未观察到区域的空洞。如Nice-SLAM不能填补空洞,导致相机位姿出现漂移。
NeRF+SLAM论文阅读笔记
总体流程:
1)场景表示:联合坐标+参数编码-------MLP---------->RGB和SDF
2)tracking:最小化损失函数优化pose
3)mapping:从所有帧采样的全局射线进行全局BA,联合优化map&pose文章来源地址https://www.toymoban.com/news/detail-484293.html

vMAP: Vectorised Object Mapping for Neural Field SLAM

到了这里,关于NeRF+SLAM论文阅读笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [论文阅读]Coordinate Attention for Efficient Mobile Network Design

      最近关于移动网络设计的研究已经证明了通道注意力(例如, the Squeeze-and-Excitation attention)对于提高模型的性能有显著的效果,但它们通常忽略了位置信息,而位置信息对于生成空间选择性注意图非常重要。在本文中,我们提出了一种新的移动网络注意力机制,将位置信息

    2024年02月07日
    浏览(49)
  • ORB-SLAM 论文阅读

    论文链接 ORB-SLAM 0. Abstract 本文提出了 ORB-SLAM,一种基于特征的单目同步定位和建图 (SLAM) 系统 该系统对严重的运动杂波具有鲁棒性,允许宽基线环路闭合和重新定位,并包括全自动初始化 选择重建的点和关键帧的适者生存策略具有出色的鲁棒性,并生成紧凑且可跟踪的地图

    2024年01月22日
    浏览(57)
  • 【NeRF】(一)NeRF论文学习笔记

    概述: 重建:根据目前有的不同角度二维图片,重建三维物体。 用 MLP 网络学 Scene Representation,以实现 输入源图像对应的三维空间坐标和相机视角 ( x , y , z , θ , ϕ ) (x,y,z,theta,phi) ( x , y , z , θ , ϕ ) ;输出 ( R , G , B , σ ) (R,G,B,sigma) ( R , G , B , σ ) ,分别表示RGB 颜色值和体素

    2024年02月06日
    浏览(37)
  • 论文阅读《Block-NeRF: Scalable Large Scene Neural View Synthesis》

    论文地址:https://arxiv.org/pdf/2202.05263.pdf 复现源码:https://github.com/dvlab-research/BlockNeRFPytorch   Block-NeRF是一种能够表示大规模环境的神经辐射场(Neural Radiance Fields)的变体,将 NeRF 扩展到渲染跨越多个街区的城市规模场景。该方法将场景分解为单独训练的 NeRF,使渲染时间与

    2024年02月03日
    浏览(42)
  • 【论文阅读】CubeSLAM: Monocular 3D Object SLAM

    这一部分是论文中最难理解的一章,作者的主要想法,是利用2d图像来生成3d的目标包围框(bounding box),一方面这个思路本身就不是很好懂,另一方面,作者写这一章还是用的倒叙,显得更难理解了。 3d包围框的定义 对于本文的3d包围框,需要使用九个量来定义,可以分为三

    2024年02月07日
    浏览(43)
  • 论文阅读-AVoiD-DF: Audio-Visual Joint Learning for Detecting Deepfake(多模态数据集DefakeAVMiT+多模态鉴伪方法AVoiD-DF)

    论文名称:AVoiD-DF: Audio-Visual Joint Learning for Detecting Deepfake 作者团队:   以前的方法仅侧重单模态的伪造,即使有多模态的数据也只是将音频信号当做监督信号,忽略了音频被伪造的可能。 提出一个新的多模态基准数据集DefakeAVMiT,其包含足够多的视频和音频伪造内容,两个

    2024年02月03日
    浏览(40)
  • NICE-SLAM: Neural Implicit Scalable Encoding for SLAM论文阅读

    标题 :NICE-SLAM: Neural Implicit Scalable Encoding for SLAM 作者 :Zihan Zhu, Songyou Peng,Viktor Larsson — Zhejiang University 来源 :CVPR 代码 :https://pengsongyou.github.io/nice-slam 时间 :2022 神经隐式(Neural implicit representations)表示最近在同步定位和地图绘制(SLAM)方面有一定的进展,但现有方法

    2024年02月15日
    浏览(50)
  • 论文阅读:SuMa++: Efficient LiDAR-based Semantic SLAM

    来源:IROS 2019 链接:https://ieeexplore.ieee.org/document/8967704 可靠、准确的定位和映射是大多数自动驾驶系统的关键组成部分。除了映射环境的几何信息外,语义在实现智能导航行为方面也起着重要作用。在大多数现实环境中,由于移动对象引起的动态变换,这个任务特别复杂,这

    2024年03月12日
    浏览(74)
  • LEARNING TO EXPLORE USING ACTIVE NEURAL SLAM 论文阅读

    题目 :LEARNING TO EXPLORE USING ACTIVE NEURAL SLAM 作者 :Devendra Singh Chaplot, Dhiraj Gandhi 项目地址 :https://devendrachaplot.github.io/projects/Neural-SLAM 代码地址 :https://github.com/devendrachaplot/Neural-SLAM 来源 :LCLR 时间 :2022 这项工作提出了一种模块化和分层的方法来学习探索 3D 环境的策略,称为

    2024年02月14日
    浏览(41)
  • Text-to-3D 任务论文笔记: Latent NeRF

    论文链接: https://arxiv.org/pdf/2211.07600.pdf 这篇文章做的task可以简单分为三个: 直接用文本生成3D; 用一个所谓的Sketch-Shape,让用户定义基础形状,然后加上文本,共同去引导生成3D;(Latent-NeRF主体) 用户给定mesh,可以给uv参数,也可以不给,然后引导latent-NeRF去给这个Me

    2024年02月10日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包