ORC与Parquet压缩分析

这篇具有很好参考价值的文章主要介绍了ORC与Parquet压缩分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

ORC与Parquet压缩分析

@date:2023年6月14日

环境

  • OS:CentOS 6.5
  • JDK:1.8
  • 内存:256G
  • 磁盘:HDD
  • CPU:Dual 8-core Intel® Xeon® CPU (32 Hyper-Threads) E5-2630 v3 @ 2.40GHz

通过Orc和Parquet原生方式进行数据写入,并采用以下算法进行压缩测试

  • lzo
  • lz4(lz4_raw)
  • Zstandard
  • snappy

数据schema

尽可能的保持parquet与ORC的schema一致。

parquet

        MessageType schema = MessageTypeParser.parseMessageType("message schema {\n" +
                " required INT64 long_value;\n" +
                " required double double_value;\n" +
                " required boolean boolean_value;\n" +
                " required binary string_value (UTF8);\n" +
                " required binary decimal_value (DECIMAL(32,18));\n" +
                " required INT64 time_value;\n" +
                " required INT64 time_instant_value;\n" +
                " required INT64 date_value;\n" +
                "}");

orc

        TypeDescription readSchema = TypeDescription.createStruct()
                .addField("long_value", TypeDescription.createLong())
                .addField("double_value", TypeDescription.createDouble())
                .addField("boolean_value", TypeDescription.createBoolean())
                .addField("string_value", TypeDescription.createString())
                .addField("decimal_value", TypeDescription.createDecimal().withScale(18))
                .addField("time_value", TypeDescription.createTimestamp())
                .addField("time_instant_value", TypeDescription.createTimestampInstant())
                .addField("date_value", TypeDescription.createDate());

数据实验

将工程打包成uber JAR,通过java命令执行

⚠️对parquet使用lzo时需要额外的配置

  1. 在使用lzo的时候需要在系统上安装Lzo 2.x

    # 查询是否有lzo安装包
    [root@demo ~]# rpm -q lzo
    
    # yum方式安装
    yum install lzo
    
    # rpm方式 下载lzo的rpm包
    rpm -ivh lzo-2.06-8.el7.x86_64.rpm
    
    # 源码编译安装
    # 1源码编译的依赖
    yum -y install lzo-devel zlib-devel gcc autoconf automake libtool
    # 解压缩源码
    tar -zxvf lzo-2.10.tar.gz -C ../source
    # 配置和安装
    cd ~/source/lzo-2.10
    ./configure --enable-shared --prefix /usr/local/lzo-2.1
    make && sudo make install
    
  2. 由于GPLNativeCodeLoader类在加载的时候默认lib的目录是/native/Linux-amd64-64/lib,所以需要使用的lib copy进去。

    -rw-r--r-- 1 root root  112816 Jun 13 17:57 hadoop-lzo-0.4.20.jar
    -rw-r--r-- 1 root root  117686 Jun 13 17:17 libgplcompression.a
    -rw-r--r-- 1 root root    1157 Jun 13 17:17 libgplcompression.la
    -rwxr-xr-x 1 root root   75368 Jun 13 17:17 libgplcompression.so
    -rwxr-xr-x 1 root root   75368 Jun 13 17:17 libgplcompression.so.0
    -rwxr-xr-x 1 root root   75368 Jun 13 17:17 libgplcompression.so.0.0.0
    -rw-r--r-- 1 root root 1297096 Jun 13 17:17 libhadoop.a
    -rw-r--r-- 1 root root 1920190 Jun 13 17:17 libhadooppipes.a
    -rwxr-xr-x 1 root root  765897 Jun 13 17:17 libhadoop.so
    -rwxr-xr-x 1 root root  765897 Jun 13 17:17 libhadoop.so.1.0.0
    -rw-r--r-- 1 root root  645484 Jun 13 17:17 libhadooputils.a
    -rw-r--r-- 1 root root  438964 Jun 13 17:17 libhdfs.a
    -rwxr-xr-x 1 root root  272883 Jun 13 17:17 libhdfs.so
    -rwxr-xr-x 1 root root  272883 Jun 13 17:17 libhdfs.so.0.0.0
    -rw-r--r-- 1 root root  290550 Jun 13 17:17 liblzo2.a
    -rw-r--r-- 1 root root     929 Jun 13 17:17 liblzo2.la
    -rwxr-xr-x 1 root root  202477 Jun 13 17:17 liblzo2.so
    -rwxr-xr-x 1 root root  202477 Jun 13 17:17 liblzo2.so.2
    -rwxr-xr-x 1 root root  202477 Jun 13 17:17 liblzo2.so.2.0.0
    -rw-r--r-- 1 root root  246605 Jun 13 17:17 libsigar-amd64-linux.so
    
  3. 在执行java需要手动配置java.library.path和引用hadoop-lzo-0.4.20.jar(没有找到将其一并打包到工程uber.jar里面的方式) hadoop-lzo编译

 # 命令解释
 java -cp file-compress.jar com.donny.orc.ReadWriterOrc {数据记录数} {压缩简称}
 # ORC未压缩
 java -cp file-compress.jar com.donny.orc.ReadWriterOrc 10000 none
 # ORC采用lzo压缩
 java -cp file-compress.jar com.donny.orc.ReadWriterOrc 10000 lzo
 # ORC采用lz4压缩
 java -cp file-compress.jar com.donny.orc.ReadWriterOrc 10000 lz4
 # ORC采用zstd压缩
 java -cp file-compress.jar com.donny.orc.ReadWriterOrc 10000 zstd
 # ORC采用snappy压缩
 java -cp file-compress.jar com.donny.orc.ReadWriterOrc 10000 snappy
 
 # Parquet未压缩
 java -cp file-compress.jar com.donny.parquet.NativeParquet 10000 none
 # Parquet采用lzo压缩
 java -Djava.library.path=/native/Linux-amd64-64/lib -cp file-compress.jar:hadoop-lzo-0.4.20.jar com.donny.parquet.NativeParquet 300000000 lzo
 # Parquet采用lz4压缩
 java -cp file-compress.jar com.donny.parquet.NativeParquet 10000 lz4_raw
 # Parquet采用zstd压缩
 java -cp file-compress.jar com.donny.parquet.NativeParquet 10000 zstd
 # Parquet采用snappy压缩
 java -cp file-compress.jar com.donny.parquet.NativeParquet 10000 snappy

压缩结果

ORC与Parquet压缩分析
ORC与Parquet压缩分析

查询分析

文件的查询性能分析

文件使用建议

在数仓和数据湖的场景中,数据一般按以下结构进行分层存储:
ORC与Parquet压缩分析

  • 贴源层:该层是将数据源中的数据直接抽取过来的,数据类型以文本为主,需要保持数据原样。数据不会发生变化,在初次清洗之后被读取的概率也不大,可以采用ORC格式文件外加Zstandard存储。以控制存储最小。

  • 加工汇总层:该层是数仓的数据加工组织阶段,会做一些数据的清洗和规范化的操作,比如去除空数据、脏数据、离群值等。采用ORC能够较好支持该阶段的数据ACID需求。数据压缩可以采用Lz4,以达到最优的性价比。

  • 应用层:该层的数据是供数据分析和数据挖掘使用,比如常用的数据报表就是存在这里。此时的数据已经具备了对外部的直接使用的能力。数据的可能具备了一定层度的结构化,而Parquet在实现复杂的嵌套结构方面,比ORC更具有优势。所以该层一般采用Parquet,处于该层的数据一般变化不大,可以采用Zstandard压缩。

    主要考虑的因素

    • 数据的变化性
    • 数据的结构复杂性
    • 数据的读写高效性
    • 数据压缩率

附录

编译hadoop-lzo

编译前提
  • 安装JDK1.8+
  • 安装maven
  • OS已经安装lzo的库
  • 下载源码包 https://github.com/twitter/hadoop-lzo/releases/tag/release-0.4.20
# 解压安装包
tar -zxvf hadoop-lzo-0.4.20.tar.gz -C /opt/software/hadoop-lzo/;
# 重命名
mv hadoop-lzo-release-0.4.20 hadoop-lzo-0.4.20;
# 进入项目目录
cd /opt/software/hadoop-lzo/hadoop-lzo-0.4.20;
# 进行编译
mvn clean package

可以通过对root模块的pom.xml进行修改来对Hadoop进行适配。一般开源的不需要调整。

<properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
   <!-- <hadoop.current.version>2.6.4</hadoop.current.version>-->
    <hadoop.current.version>2.9.2</hadoop.current.version>
    <hadoop.old.version>1.0.4</hadoop.old.version>
</properties>
编译程中出现的错误
[ERROR] Failed to execute goal org.apache.maven.plugins:maven-antrun-plugin:1.7:run (build-native-non-win) on project hadoop-lzo: An Ant BuildException has occured: exec returned: 1
[ERROR] around Ant part ...<exec failonerror="true" dir="${build.native}" executable="sh">... @ 16:66 in /opt/software/hadoop-lzo/hadoop-lzo-0.4.20/target/antrun/build-build-native-non-win.xml
[ERROR] -> [Help 1]
[ERROR] 
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR] 
[ERROR] For more information about the errors and possible solutions, please read the following articles:
[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException

通过配置JAVA_HOME环境变量解决文章来源地址https://www.toymoban.com/news/detail-484421.html

结果文件
  • target/hadoop-lzo-0.4.20.jar
  • target/native/Linux-amd64-64/lib下的文件

file-compress.jar源码

ReadWriterOrc类
package com.donny.orc;


import com.donny.base.utils.FileUtil;
import com.donny.parquet.NativeParquet;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hive.common.type.HiveDecimal;
import org.apache.hadoop.hive.ql.exec.vector.*;
import org.apache.hadoop.hive.ql.io.sarg.PredicateLeaf;
import org.apache.hadoop.hive.ql.io.sarg.SearchArgumentFactory;
import org.apache.hadoop.hive.serde2.io.HiveDecimalWritable;
import org.apache.orc.*;
import org.apache.parquet.hadoop.metadata.CompressionCodecName;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.File;
import java.io.IOException;
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.sql.Timestamp;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.UUID;

/**
 * <dependency>
 * <groupId>org.apache.orc</groupId>
 * <artifactId>orc-core</artifactId>
 * <version>1.8.3</version>
 * </dependency>
 *
 * <dependency>
 * <groupId>org.apache.hadoop</groupId>
 * <artifactId>hadoop-client</artifactId>
 * <version>2.9.2</version>
 * </dependency>
 *
 * <dependency>
 * <groupId>org.lz4</groupId>
 * <artifactId>lz4-java</artifactId>
 * <version>1.8.0</version>
 * </dependency>
 *
 * @author 1792998761@qq.com
 * @description
 * @date 2023/6/8
 */
public class ReadWriterOrc {

    private static final Logger LOG = LoggerFactory.getLogger(ReadWriterOrc.class);
    public static String path = System.getProperty("user.dir") + File.separator + "demo.orc";
    public static CompressionKind codecName;
    static int records;

    public static void main(String[] args) throws IOException {
        // 写入记录数
        String recordNum = args[0];
        records = Integer.parseInt(recordNum);
        if (records < 10000 || records > 300000000) {
            LOG.error("压缩记录数范围是10000~300000000");
            return;
        }
        // 压缩算法
        String compressionCodecName = args[1];
        switch (compressionCodecName.toLowerCase()) {
            case "none":
                codecName = CompressionKind.NONE;
                break;
            case "lzo":
                codecName = CompressionKind.LZO;
                break;
            case "lz4":
                codecName = CompressionKind.LZ4;
                break;
            case "zstd":
                codecName = CompressionKind.ZSTD;
                break;
            default:
                LOG.error("目前压缩算法支持none、lzo、lz4、zstd");
                return;
        }

        long t1 = System.currentTimeMillis();
        writerToOrcFile();
        long duration = System.currentTimeMillis() - t1;

        String fileSize = "";
        File afterFile = new File(path);
        if (afterFile.exists() && afterFile.isFile()) {
            fileSize = FileUtil.fileSizeByteConversion(afterFile.length(), 2);
        }
        LOG.info("Using the {} compression algorithm to write {} pieces of data takes time: {}s, file size is {}.",
                compressionCodecName, recordNum, (duration / 1000), fileSize);
    }

    public static void readFromOrcFile() throws IOException {
        Configuration conf = new Configuration();

        TypeDescription readSchema = TypeDescription.createStruct()
                .addField("long_value", TypeDescription.createLong())
                .addField("double_value", TypeDescription.createDouble())
                .addField("boolean_value", TypeDescription.createBoolean())
                .addField("string_value", TypeDescription.createString())
                .addField("decimal_value", TypeDescription.createDecimal().withScale(18))
                .addField("time_value", TypeDescription.createTimestamp())
                .addField("time_instant_value", TypeDescription.createTimestampInstant())
                .addField("date_value", TypeDescription.createDate());


        Reader reader = OrcFile.createReader(new Path(path),
                OrcFile.readerOptions(conf));
        OrcFile.WriterVersion writerVersion = reader.getWriterVersion();
        System.out.println("writerVersion=" + writerVersion);
        Reader.Options readerOptions = new Reader.Options()
                .searchArgument(
                        SearchArgumentFactory
                                .newBuilder()
                                .between("long_value", PredicateLeaf.Type.LONG, 0L, 1024L)
                                .build(),
                        new String[]{"long_value"}
                );

        RecordReader rows = reader.rows(readerOptions.schema(readSchema));

        VectorizedRowBatch batch = readSchema.createRowBatch();
        int count = 0;
        while (rows.nextBatch(batch)) {
            LongColumnVector longVector = (LongColumnVector) batch.cols[0];
            DoubleColumnVector doubleVector = (DoubleColumnVector) batch.cols[1];
            LongColumnVector booleanVector = (LongColumnVector) batch.cols[2];
            BytesColumnVector stringVector = (BytesColumnVector) batch.cols[3];
            DecimalColumnVector decimalVector = (DecimalColumnVector) batch.cols[4];
            TimestampColumnVector dateVector = (TimestampColumnVector) batch.cols[5];
            TimestampColumnVector timestampVector = (TimestampColumnVector) batch.cols[6];
            count++;
            if (count == 1) {
                for (int r = 0; r < batch.size; r++) {
                    long longValue = longVector.vector[r];
                    double doubleValue = doubleVector.vector[r];
                    boolean boolValue = booleanVector.vector[r] != 0;
                    String stringValue = stringVector.toString(r);
                    HiveDecimalWritable hiveDecimalWritable = decimalVector.vector[r];
                    long time1 = dateVector.getTime(r);
                    Date date = new Date(time1);
                    String format = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss").format(date);
                    long time = timestampVector.time[r];
                    int nano = timestampVector.nanos[r];
                    Timestamp timestamp = new Timestamp(time);
                    timestamp.setNanos(nano);
                    System.out.println(longValue + ", " + doubleValue + ", " + boolValue + ", " + stringValue + ", " + hiveDecimalWritable.getHiveDecimal().toFormatString(18) + ", " + format + ", " + timestamp);

                }
            }

        }
        System.out.println("count=" + count);
        rows.close();
    }


    public static void writerToOrcFile() throws IOException {

        Configuration configuration = new Configuration();
        configuration.set("orc.overwrite.output.file", "true");
        TypeDescription schema = TypeDescription.createStruct()
                .addField("long_value", TypeDescription.createLong())
                .addField("double_value", TypeDescription.createDouble())
                .addField("boolean_value", TypeDescription.createBoolean())
                .addField("string_value", TypeDescription.createString())
                .addField("decimal_value", TypeDescription.createDecimal().withScale(18))
                .addField("time_value", TypeDescription.createTimestamp())
                .addField("time_instant_value", TypeDescription.createTimestampInstant())
                .addField("date_value", TypeDescription.createDate());

        Writer writer = OrcFile.createWriter(new Path(path),
                OrcFile.writerOptions(configuration)
                        .setSchema(schema)
                        .stripeSize(67108864)
                        .bufferSize(64 * 1024)
                        .blockSize(128 * 1024 * 1024)
                        .rowIndexStride(10000)
                        .blockPadding(true)
                        .compress(codecName));

        //根据 列数和默认的1024 设置创建一个batch
        VectorizedRowBatch batch = schema.createRowBatch();
        LongColumnVector longVector = (LongColumnVector) batch.cols[0];
        DoubleColumnVector doubleVector = (DoubleColumnVector) batch.cols[1];
        LongColumnVector booleanVector = (LongColumnVector) batch.cols[2];
        BytesColumnVector stringVector = (BytesColumnVector) batch.cols[3];
        DecimalColumnVector decimalVector = (DecimalColumnVector) batch.cols[4];
        TimestampColumnVector dateVector = (TimestampColumnVector) batch.cols[5];
        TimestampColumnVector timestampVector = (TimestampColumnVector) batch.cols[6];
        for (int r = 0; r < records; ++r) {
            int row = batch.size++;
            longVector.vector[row] = r;
            doubleVector.vector[row] = r;
            booleanVector.vector[row] = r % 2;
            stringVector.setVal(row, UUID.randomUUID().toString().getBytes());
            BigDecimal bigDecimal = BigDecimal.valueOf((double) r / 3).setScale(18, RoundingMode.DOWN);
            HiveDecimal hiveDecimal = HiveDecimal.create(bigDecimal).setScale(18);
            decimalVector.set(row, hiveDecimal);
            long time = new Date().getTime();
            Timestamp timestamp = new Timestamp(time);
            dateVector.set(row, timestamp);
            timestampVector.set(row, timestamp);

            if (batch.size == batch.getMaxSize()) {
                writer.addRowBatch(batch);
                batch.reset();
            }
        }
        if (batch.size != 0) {
            writer.addRowBatch(batch);
            batch.reset();
        }
        writer.close();
    }
}
NativeParquet类
package com.donny.parquet;

import com.donny.base.utils.FileUtil;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.parquet.column.ParquetProperties;
import org.apache.parquet.example.data.Group;
import org.apache.parquet.example.data.GroupFactory;
import org.apache.parquet.example.data.simple.SimpleGroupFactory;
import org.apache.parquet.hadoop.ParquetFileWriter;
import org.apache.parquet.hadoop.ParquetReader;
import org.apache.parquet.hadoop.ParquetWriter;
import org.apache.parquet.hadoop.example.GroupReadSupport;
import org.apache.parquet.hadoop.example.GroupWriteSupport;
import org.apache.parquet.hadoop.metadata.CompressionCodecName;
import org.apache.parquet.schema.MessageType;
import org.apache.parquet.schema.MessageTypeParser;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.File;
import java.io.IOException;
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.util.Date;
import java.util.Random;
import java.util.UUID;

/**
 * <dependency>
 * <groupId>org.lz4</groupId>
 * <artifactId>lz4-java</artifactId>
 * <version>1.8.0</version>
 * </dependency>
 *
 * <dependency>
 * <groupId>org.apache.hadoop</groupId>
 * <artifactId>hadoop-client</artifactId>
 * <version>2.9.2</version>
 * </dependency>
 *
 * <dependency>
 * <groupId>org.apache.parquet</groupId>
 * <artifactId>parquet-avro</artifactId>
 * <version>1.13.1</version>
 * </dependency>
 *
 * <dependency>
 * <groupId>org.apache.avro</groupId>
 * <artifactId>avro</artifactId>
 * <version>1.11.1</version>
 * </dependency>
 *
 * @author 1792998761@qq.com
 * @description
 * @date 2023/6/12
 */
public class NativeParquet {
    private static final Logger LOG = LoggerFactory.getLogger(NativeParquet.class);

    public static String path = System.getProperty("user.dir") + File.separator + "demo.parquet";

    public static void main(String[] args) throws IOException {
        // 写入记录数
        String recordNum = args[0];
        int records = Integer.parseInt(recordNum);
        if (records < 10000 || records > 300000000) {
            LOG.error("压缩记录数范围是10000~300000000");
            return;
        }
        // 压缩算法
        String compressionCodecName = args[1];
        CompressionCodecName codecName;
        switch (compressionCodecName.toLowerCase()) {
            case "none":
                codecName = CompressionCodecName.UNCOMPRESSED;
                break;
            case "lzo":
                codecName = CompressionCodecName.LZO;
                break;
            case "lz4":
                codecName = CompressionCodecName.LZ4;
                break;
            case "lz4_raw":
                codecName = CompressionCodecName.LZ4_RAW;
                break;
            case "zstd":
                codecName = CompressionCodecName.ZSTD;
                break;
            default:
                LOG.error("目前压缩算法支持none、lzo、lz4、lz4_raw、zstd");
                return;
        }
        long t1 = System.currentTimeMillis();

        MessageType schema = MessageTypeParser.parseMessageType("message schema {\n" +
                " required INT64 long_value;\n" +
                " required double double_value;\n" +
                " required boolean boolean_value;\n" +
                " required binary string_value (UTF8);\n" +
                " required binary decimal_value (DECIMAL(32,18));\n" +
                " required INT64 time_value;\n" +
                " required INT64 time_instant_value;\n" +
                " required INT64 date_value;\n" +
                "}");

        GroupFactory factory = new SimpleGroupFactory(schema);


        Path dataFile = new Path(path);

        Configuration configuration = new Configuration();
        GroupWriteSupport.setSchema(schema, configuration);
        GroupWriteSupport writeSupport = new GroupWriteSupport();

        ParquetWriter<Group> writer = new ParquetWriter<>(
                dataFile,
                ParquetFileWriter.Mode.OVERWRITE,
                writeSupport,
                codecName,
                ParquetWriter.DEFAULT_BLOCK_SIZE,
                ParquetWriter.DEFAULT_PAGE_SIZE,
                ParquetWriter.DEFAULT_PAGE_SIZE, /* dictionary page size */
                ParquetWriter.DEFAULT_IS_DICTIONARY_ENABLED,
                ParquetWriter.DEFAULT_IS_VALIDATING_ENABLED,
                ParquetProperties.WriterVersion.PARQUET_1_0,
                configuration
        );
        Group group;
        for (int i = 0; i < records; i++) {
            group = factory.newGroup();
            group.append("long_value", new Random().nextLong())
                    .append("double_value", new Random().nextDouble())
                    .append("boolean_value", new Random().nextBoolean())
                    .append("string_value", UUID.randomUUID().toString())
                    .append("decimal_value", BigDecimal.valueOf((double) i / 3).setScale(18, RoundingMode.DOWN).toString())
                    .append("time_value", new Date().getTime())
                    .append("time_instant_value", new Date().getTime())
                    .append("date_value", new Date().getTime());
            writer.write(group);
        }

        writer.close();

//        GroupReadSupport readSupport = new GroupReadSupport();
//        ParquetReader<Group> reader = new ParquetReader<>(dataFile, readSupport);
//        Group result = null;
//        while ((result = reader.read()) != null) {
//            System.out.println(result);
//        }
        long duration = System.currentTimeMillis() - t1;

        String fileSize = "";
        File afterFile = new File(path);
        if (afterFile.exists() && afterFile.isFile()) {
            fileSize = FileUtil.fileSizeByteConversion(afterFile.length(), 2);
        }
        LOG.info("Using the {} compression algorithm to write {} pieces of data takes time: {}s, file size is {}.",
                compressionCodecName, recordNum, (duration / 1000), fileSize);
    }
}
FileUtil类
package com.donny.base.utils;

import java.math.BigDecimal;
import java.math.RoundingMode;
import java.text.DecimalFormat;

/**
 * File使用帮助工具类
 *
 * @author 1792998761@qq.com
 * @date 2019/11/21 14:44
 * @since 1.0
 */
public class FileUtil {

    /**
     * 数据存储单位类型 B
     */
    public static final int STORAGE_UNIT_TYPE_B = 0;
    /**
     * 数据存储单位类型 KB
     */
    public static final int STORAGE_UNIT_TYPE_KB = 1;
    /**
     * 数据存储单位类型 MB
     */
    public static final int STORAGE_UNIT_TYPE_MB = 2;
    /**
     * 数据存储单位类型 GB
     */
    public static final int STORAGE_UNIT_TYPE_GB = 3;
    /**
     * 数据存储单位类型 TB
     */
    public static final int STORAGE_UNIT_TYPE_TB = 4;
    /**
     * 数据存储单位类型 PB
     */
    public static final int STORAGE_UNIT_TYPE_PB = 5;
    /**
     * 数据存储单位类型 EB
     */
    public static final int STORAGE_UNIT_TYPE_EB = 6;
    /**
     * 数据存储单位类型 ZB
     */
    public static final int STORAGE_UNIT_TYPE_ZB = 7;
    /**
     * 数据存储单位类型 YB
     */
    public static final int STORAGE_UNIT_TYPE_YB = 8;
    /**
     * 数据存储单位类型 BB
     */
    public static final int STORAGE_UNIT_TYPE_BB = 9;
    /**
     * 数据存储单位类型 NB
     */
    public static final int STORAGE_UNIT_TYPE_NB = 10;
    /**
     * 数据存储单位类型 DB
     */
    public static final int STORAGE_UNIT_TYPE_DB = 11;

    private FileUtil() {
        throw new IllegalStateException("Utility class");
    }

    /**
     * 将文件大小转为人类惯性理解方式
     *
     * @param size               大小 单位默认B
     * @param decimalPlacesScale 精确小数位
     */
    public static String fileSizeByteConversion(Long size, Integer decimalPlacesScale) {
        int scale = 0;
        long fileSize = 0L;
        if (decimalPlacesScale != null && decimalPlacesScale >= 0) {
            scale = decimalPlacesScale;
        }
        if (size != null && size >= 0) {
            fileSize = size;
        }
        return sizeByteConversion(fileSize, scale, STORAGE_UNIT_TYPE_B);
    }

    /**
     * 将文件大小转为人类惯性理解方式
     *
     * @param size               大小
     * @param decimalPlacesScale 精确小数位
     * @param storageUnitType    起始单位类型
     */
    public static String fileSizeByteConversion(Long size, Integer decimalPlacesScale, int storageUnitType) {
        int scale = 0;
        long fileSize = 0L;
        if (decimalPlacesScale != null && decimalPlacesScale >= 0) {
            scale = decimalPlacesScale;
        }
        if (size != null && size >= 0) {
            fileSize = size;
        }
        return sizeByteConversion(fileSize, scale, storageUnitType);
    }

    private static String sizeByteConversion(long size, int decimalPlacesScale, int storageUnitType) {
        BigDecimal fileSize = new BigDecimal(size);
        BigDecimal param = new BigDecimal(1024);
        int count = storageUnitType;
        while (fileSize.compareTo(param) > 0 && count < STORAGE_UNIT_TYPE_NB) {
            fileSize = fileSize.divide(param, decimalPlacesScale, RoundingMode.HALF_UP);
            count++;
        }
        StringBuilder dd = new StringBuilder();
        int s = decimalPlacesScale;
        dd.append("0");
        if (s > 0) {
            dd.append(".");
        }
        while (s > 0) {
            dd.append("0");
            s = s - 1;
        }
        DecimalFormat df = new DecimalFormat(dd.toString());
        String result = df.format(fileSize) + "";
        switch (count) {
            case STORAGE_UNIT_TYPE_B:
                result += "B";
                break;
            case STORAGE_UNIT_TYPE_KB:
                result += "KB";
                break;
            case STORAGE_UNIT_TYPE_MB:
                result += "MB";
                break;
            case STORAGE_UNIT_TYPE_GB:
                result += "GB";
                break;
            case STORAGE_UNIT_TYPE_TB:
                result += "TB";
                break;
            case STORAGE_UNIT_TYPE_PB:
                result += "PB";
                break;
            case STORAGE_UNIT_TYPE_EB:
                result += "EB";
                break;
            case STORAGE_UNIT_TYPE_ZB:
                result += "ZB";
                break;
            case STORAGE_UNIT_TYPE_YB:
                result += "YB";
                break;
            case STORAGE_UNIT_TYPE_DB:
                result += "DB";
                break;
            case STORAGE_UNIT_TYPE_NB:
                result += "NB";
                break;
            case STORAGE_UNIT_TYPE_BB:
                result += "BB";
                break;
            default:
                break;
        }
        return result;
    }
}

到了这里,关于ORC与Parquet压缩分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • elementUI date-picker 日期格式转为 2023/08/08格式

    坑: dom 中 value注意这里的是 “yyyy/MM/dd” 。moment 中在 format格式化的时候是 “yyyy/MM/DD”。\\\"YYYY/MM/DD\\\"也可以 还是要仔细看官网:https://element.eleme.cn/#/zh-CN/component/date-picker#ri-qi-ge-shi

    2024年02月13日
    浏览(30)
  • 使用hive查看orc文件 orcfiledump命令详解 异常处理(Failed to read ORC file)

    列式存储以orc和parquet文件居多,现阶段hive数据存储的主流格式是orc,然后结合presto(目前对orc的支持好于parquet)做一些即席查询。hive数据文件是直接存储在hdfs上,但是hadoop貌似没有提供直接查看文本的命令,好在hive提供了支持。 1. 命令帮助: hive --service orcfiledump --help 2. 数

    2024年02月16日
    浏览(40)
  • 【python】pyarrow.parquet+pandas:读取及使用parquet文件

      Parquet是一种用于 列式存储 和 压缩数据 的文件格式,广泛应用于大数据处理和分析中。Python提供了多个库来处理Parquet文件,例如pyarrow和fastparquet。   本文将介绍如何使用pyarrow.parquet+pandas库操作Parquet文件。    pyarrow.parquet 模块,可以读取和写入Parquet文件,以及进行

    2024年02月21日
    浏览(40)
  • C++---状态压缩dp---愤怒的小鸟(每日一道算法2023.4.19)

    注意事项: 难度警告!这题在NOIP中也算偏难的题,量力而行。 本题为\\\"状态压缩dp—最短Hamilton路径\\\"的扩展题,建议先阅读这篇文章并理解。 本题是\\\"重复覆盖问题\\\"可以使用\\\"Dancing Links\\\"做,但我们这里是用的状态压缩dp来写。 题目: Kiana 最近沉迷于一款神奇的游戏无法自拔。

    2023年04月23日
    浏览(34)
  • Android图片压缩原理分析(三)—— 哈夫曼压缩讲解

      前面几篇文章,我们了解了一些关于图片压缩的基础知识以及Android的Bitmap相关的知识,然后也提到的 Skia 是 Android 的重要组成部分。在鲁班压缩算法解析中初次提到了哈夫曼压缩,那么他们之间到底是存在什么关系呢?今天我们就来探究探究。 什么是skia图像引擎了,详细

    2024年02月11日
    浏览(36)
  • 【数据存储】数据压缩需求分析

    1.数据压缩需求分析 数据压缩的价值 数据压缩不仅仅是能够为用户节约存储空间,也能较快的传输各种信息,减小通信延迟。此外,在节省通信带宽和节约信息传送资源消耗方面,数据压缩也能起到很大的作用。 数据压缩领域主流的无损压缩算法 当前数据压缩领域流行的无

    2024年01月25日
    浏览(57)
  • ORC工具(使用阿里云统一文字识别接口实现)

    废话不多,直接上代码。 转换的字符结果是一行。

    2024年02月12日
    浏览(36)
  • Parquet文件格式问答

    Parquet文件格式是一种列式存储格式,用于在大数据生态系统中存储和处理大规模数据 。它由Apache Parquet项目开发和维护,是一种开放的、跨平台的数据存储格式。 Parquet文件格式采用了一种高效的压缩和编码方式,可以在压缩和解压缩时利用数据的局部性和重复性,从而达到

    2024年02月04日
    浏览(42)
  • 记一次 Windows10 内存压缩模块 崩溃分析

    在给各位朋友免费分析 .NET程序 各种故障的同时,往往也会收到各种其他类型的dump,比如:Windows 崩溃,C++ 崩溃,Mono 崩溃,真的是啥都有,由于基础知识的相对缺乏,分析起来并不是那么的顺利,今天就聊一个 Windows 崩溃的内核dump 吧,这个 dump 是前几天有位朋友给到我的

    2023年04月26日
    浏览(38)
  • 【数据压缩】第二次作业——PNG图像格式分析

    PNG格式是一种采用无损压缩算法的位图格式,支持索引、灰度、RGB三种颜色方案以及alpha通道等特性。 PNG能够支持256色调色板技术,产生文件的体积小,最高支持24位真彩色图像以及8位灰度图像,支持存在附加文本信息,以保留图像名称、作者、著作权、创作时间、注释等,

    2023年04月08日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包