openai的whisper语音识别介绍

这篇具有很好参考价值的文章主要介绍了openai的whisper语音识别介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

openAI发布了chatgpt,光环一时无两。但是openAI不止有这一个项目,它的其他项目也非常值得我们去研究学习。

今天说说这个whisper项目
https://github.com/openai/whisper

ta是关于语音识别的。它提出了一种通过大规模的弱监督来实现的语音识别的方法。弱监督是指使用不完全或不准确的标签或注释来训练模型的方法。这种方法可以避免手动标注数据的费时费力,同时也可以利用更多的数据来提高模型的性能。

在这个方法中,使用了大量的未标注语音数据和一些已标注的数据来训练一个深度学习模型。这个模型可以自动学习如何从语音信号中提取特征,并将其转换为文本。

来看看官方的说明:(不管你看不看得懂,反正我是没看懂)
openai的whisper语音识别介绍

作者用的Python版本为3.9.9,PyTorch版本为1.10.1,但代码库应该与Python 3.8-3.10和最新的PyTorch版本兼容。(我自己试了3.11无法兼容,所以老老实实的用3.9吧)

用法也很简单,简直是调库男孩的最爱。

第一步:安装Python库

python3 -m pip install openai-whisper

第二步安装FFmpeg

# on Ubuntu or Debian
sudo apt update && sudo apt install ffmpeg

# on Arch Linux
sudo pacman -S ffmpeg

# on MacOS using Homebrew (https://brew.sh/)
brew install ffmpeg

# on Windows using Chocolatey (https://chocolatey.org/)
choco install ffmpeg

# on Windows using Scoop (https://scoop.sh/)
scoop install ffmpeg

个人建议在Windows上用Scoop装FFmpeg,Chocolatey太麻烦

第三步,选择使用的模型。

官方说有5种模型,其中4种是English-only模型,但是实测english-only也可以支持中文(只测了base可以支持中文,其他的没测但应该也可以)
openai的whisper语音识别介绍

虽说支持中文,但是也有不理想的地方,中文的识别错误率(WER (Word Error Rate))还不低,在所有支持语言的大概排中游水平。
openai的whisper语音识别介绍

第四步,具体使用

有好几种方法:
1、命令行模式

whisper audio.flac audio.mp3 audio.wav --model medium
  • 对于非英文语言,加上–language参数,例如日语
whisper japanese.wav --language Japanese

支持的语言类型还挺多的

LANGUAGES = {
    "en": "english",
    "zh": "chinese",
    "de": "german",
    "es": "spanish",
    "ru": "russian",
    "ko": "korean",
    "fr": "french",
    "ja": "japanese",
    "pt": "portuguese",
    "tr": "turkish",
    "pl": "polish",
    "ca": "catalan",
    "nl": "dutch",
    "ar": "arabic",
    "sv": "swedish",
    "it": "italian",
    "id": "indonesian",
    "hi": "hindi",
    "fi": "finnish",
    "vi": "vietnamese",
    "he": "hebrew",
    "uk": "ukrainian",
    "el": "greek",
    "ms": "malay",
    "cs": "czech",
    "ro": "romanian",
    "da": "danish",
    "hu": "hungarian",
    "ta": "tamil",
    "no": "norwegian",
    "th": "thai",
    "ur": "urdu",
    "hr": "croatian",
    "bg": "bulgarian",
    "lt": "lithuanian",
    "la": "latin",
    "mi": "maori",
    "ml": "malayalam",
    "cy": "welsh",
    "sk": "slovak",
    "te": "telugu",
    "fa": "persian",
    "lv": "latvian",
    "bn": "bengali",
    "sr": "serbian",
    "az": "azerbaijani",
    "sl": "slovenian",
    "kn": "kannada",
    "et": "estonian",
    "mk": "macedonian",
    "br": "breton",
    "eu": "basque",
    "is": "icelandic",
    "hy": "armenian",
    "ne": "nepali",
    "mn": "mongolian",
    "bs": "bosnian",
    "kk": "kazakh",
    "sq": "albanian",
    "sw": "swahili",
    "gl": "galician",
    "mr": "marathi",
    "pa": "punjabi",
    "si": "sinhala",
    "km": "khmer",
    "sn": "shona",
    "yo": "yoruba",
    "so": "somali",
    "af": "afrikaans",
    "oc": "occitan",
    "ka": "georgian",
    "be": "belarusian",
    "tg": "tajik",
    "sd": "sindhi",
    "gu": "gujarati",
    "am": "amharic",
    "yi": "yiddish",
    "lo": "lao",
    "uz": "uzbek",
    "fo": "faroese",
    "ht": "haitian creole",
    "ps": "pashto",
    "tk": "turkmen",
    "nn": "nynorsk",
    "mt": "maltese",
    "sa": "sanskrit",
    "lb": "luxembourgish",
    "my": "myanmar",
    "bo": "tibetan",
    "tl": "tagalog",
    "mg": "malagasy",
    "as": "assamese",
    "tt": "tatar",
    "haw": "hawaiian",
    "ln": "lingala",
    "ha": "hausa",
    "ba": "bashkir",
    "jw": "javanese",
    "su": "sundanese",
}

  • 加上–task translate参数,会把语音内容翻译成英语
whisper japanese.wav --language Japanese --task translate
  • 还有其他问题,可以用help命令
whisper --help

2、Python代码模式

import whisper

model = whisper.load_model("base")
result = model.transcribe("audio.mp3")
print(result["text"])

第一次加载模型时,它会联网去拉取模型(也就是上面介绍的五种模型),不同的模型大小不一。拉取完成以后,再用就不用联网了。

tiny------base------small------medium------large,模型规模从小到大,准确率也越来越高,但是所使用的资源也越来越大。根据自己需要选择,一般用small就不错了。

以上,正文结束。

下面说一下我认为的使用场景和槽点

使用场景:

1、提取视频里的音频,转成文字做记录;
2、提取录音笔里的音频,快速查看内容(音频有时候太长了,不如文字阅读速度快)
3、自己做视频或者音频时,想生成字幕也可以用。

优点:

免费、断网可用(环境搭好的情况下),安全无忧,不担心泄露

槽点:

没有实时语音支持、不支持语音合成。

我其实想做成用本地实时语音转文字,转成文字后,发给ChatGPT,然后ChatGPT返回结果后再合成语音播放出来。但是ta目前做不到实时和语音合成。文章来源地址https://www.toymoban.com/news/detail-484608.html

到了这里,关于openai的whisper语音识别介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenAI-whisper语音识别模型

    Whisper是一个通用的语音识别模型。它是在不同音频的大型数据集上训练的,也是一个多任务模型,可以执行多语言语音识别、语音翻译和语言识别。 whisper有五种模型尺寸,提供速度和准确性的平衡,其中English-only模型提供了四种选择。下面是可用模型的名称、大致内存需求

    2024年02月09日
    浏览(61)
  • OpenAI Whisper 语音识别 API 模型使用 | python 语音识别

    OpenAI 除了 ChatGPT 的 GPT3.5 API 更新之外,又推出了一个 Whisper 的语音识别模型。支持96种语言。 Python 安装 openai 库后,把需要翻译的音频目录放进去,运行程序即可生成音频对应的文字。 以上。

    2024年02月16日
    浏览(60)
  • 使用OpenAI的Whisper 模型进行语音识别

    原文:https://baijiahao.baidu.com/s?id=1756232395896695428wfr=spiderfor=pc 语音识别是人工智能中的一个领域,它允许计算机理解人类语音并将其转换为文本。 该技术用于 Alexa 和各种聊天机器人应用程序等设备。 而我们最常见的就是语音转录,语音转录可以语音转换为文字记录或字幕。

    2024年02月03日
    浏览(62)
  • 语音识别开源框架 openAI-whisper

    Whisper 是一种通用的语音识别模型。 它是OpenAI于2022年9月份开源的在各种音频的大型数据集上训练的语音识别模型,也是一个可以执行多语言语音识别、语音翻译和语言识别的多任务模型。 GitHub - yeyupiaoling/Whisper-Finetune: 微调Whisper语音识别模型和加速推理,支持Web部署和Andr

    2024年02月17日
    浏览(64)
  • .Net 使用OpenAI开源语音识别模型Whisper

    .Net 使用OpenAI开源语音识别模型 Whisper Open AI在2022年9月21日开源了号称其英文语音辨识能力已达到人类水准的 Whisper 神经网络,且它亦支持其它98种语言的自动语音辨识。 Whisper系统所提供的自动语音辨识(Automatic Speech Recognition,ASR)模型是被训练来运行语音辨识与翻译任务的

    2024年02月08日
    浏览(55)
  • OpenAI Whisper中文语音识别效果尝试和应用(一)

            近期,OpenAI发布了Whisper语音识别模型,声称其在英语语音识别方面已接近人类水平的鲁棒性和准确性。出于对自动语音识别的兴趣,本人对此进行了一些尝试,看看它对中文语音识别的效果。         本内容仅供对语音识别有兴趣或者仅仅希望应用的入门朋友

    2023年04月18日
    浏览(46)
  • OpenAI开源!!Whisper语音识别实战!!【环境配置+代码实现】

    目录 环境配置 代码实现 ******  实现 .mp4转换为 .wav文件,识别后进行匹配并输出出现的次数 ******  完整代码实现请私信 安装 ffmpeg 打开网址   https://github.com/BtbN/FFmpeg-Builds/releases 下载如下图所示的文件 下载后解压  我的路径是G:ffmpeg-master-latest-win64-gpl-shared

    2024年02月13日
    浏览(54)
  • OpenAI Whisper and ChatGPT 语音助手

    麦克风输入,展示三种结果 输入ASR结果 输出文本 输出TTS结果 gradio==3.19.1 gTTS==2.3.1 openai==0.27.0 openai-whisper==20230124 使用以下命令安装 ffmpeg 需要科学上网,否则连接超时 参考:https://github.com/bhattbhavesh91/voice-assistant-whisper-chatgpt

    2024年02月03日
    浏览(46)
  • 基于OpenAI的Whisper构建的高效语音识别模型:faster-whisper

    faster-whisper是基于OpenAI的Whisper模型的高效实现,它利用CTranslate2,一个专为Transformer模型设计的快速推理引擎。这种实现不仅提高了语音识别的速度,还优化了内存使用效率。faster-whisper的核心优势在于其能够在保持原有模型准确度的同时,大幅提升处理速度,这使得它在处理

    2024年02月02日
    浏览(61)
  • OpenAI的人工智能语音识别模型Whisper详解及使用

            拥有ChatGPT语言模型的OpenAI公司,开源了 Whisper 自动语音识别系统,OpenAI 强调 Whisper 的语音识别能力已达到人类水准。         Whisper是一个通用的语音识别模型,它使用了大量的多语言和多任务的监督数据来训练,能够在英语语音识别上达到接近人类水平的鲁

    2024年02月09日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包