Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

这篇具有很好参考价值的文章主要介绍了Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 本文为使用OpticStudio工具设计优化HUD抬头显示器系统的第二部分,主要包含演示了如何使用OpticStudio工具设计分析抬头显示器(HUD)性能,即全视场像差(FFA)和NSC矢高图。(联系我们获取文章附件)

在第一部分中,我们主要介绍了如何以逆向方式对于HUD系统进行建模,下一步我们将根据分析系统的初始性能,并结合具体设计指标了解如何对系统进行控制与优化。

初始性能

增加系统像差的因素是风挡玻璃,我们可以对于像差进行分析。

该系统可以简化为来自无穷远处(眼睛)的光,并被风挡玻璃反射;反射后,点列图可以告诉我们在“真实”风挡玻璃和理想风挡玻璃(平面镜)的情况下的光线角度。

以下是定义文件的不同步骤:

·忽略表面6至11;

·将视场类型转换为角度;

·将“物面厚度”值设置为“无限”;

·在风挡玻璃后面添加一个标准表面,作为理想平面风挡玻璃的模型。将材质设置为“MIRROR”。在“Surface 4 Properties”的“Aperture”下,从“Surface 3”中拾取“Aperture”;

·创建两种多重结构:一种带有“真正”风挡玻璃,另一种带有理想的平面反射风挡玻璃(表面3和4);

·勾选System Explorer…Aperture下的Afocal Image Space,设置单位为角度。

这些修改可以在“HUD_Step1_windshield_aberration.zar” 文件中找到:

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

要分析风挡玻璃引入的像差,请单击 Analyze…Aberrations…Full Field Aberration。塞德尔像差工具在此不适用,因为它只描述旋转对称系统中的三阶像差。

全视场像差分析计算波前的Zernike分解项,并显示整个视场的Zernike系数。

整个视场由红色方框的设置定义:

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

以下是这些视场点的表示:以下是这些视场点的表示:

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

对于每个视场点,软件将波前拟合为一系列Zernike标准多项式,就像在Analyze…Wavefront…Zernike Standard Coefficients下所做的那样。以下设置定义了需要显示的Zernike像差项:

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

在像差下,根据Zernike标准项5(Z5)和Zernike标准项6(Z6)计算初级像散:

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

初级像散定义为:

·Magnitude = sqrt (Z5^2 + Z6^2)

·Angle = (1/2)*atan2(y = -Z5 , x = -Z6)

这里,atan2是C语言函数,它给出了(y/x)的反正切。

如果“显示”设置为“图标”,则线的长度将给出大小,方向将给出角度。

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

在框架的下方是所选像差的显示范围,这里则为全视场的初级像散。

这个系统的结果为:

1.离焦:174.4 waves

2.初级像散:平均为80.2 waves

可以看出,该系统最初受到风挡玻璃带来的像散限制,光束也会被风挡玻璃稍微聚焦。但是离焦值不是问题,因为设计会将光束聚焦到LCD显示器上。HUD的设计将从校正像散开始。

建立评价函数

回到我们的原始文件“HUD_Step1_StartingPoint.zar”,自由曲面反射镜现在可以进行优化,以校正风挡玻璃引入的像差。首先,“优化”下的“快速调整”工具可以用来使我们的自由曲面镜成为球面镜。这是一个很好的起点。

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

建立一个默认的评价函数:

可以构建默认的评价函数来优化最小的光斑尺寸(RMS点)。该系统包含孔径,因此将使用矩形阵列方式对光瞳进行采样。

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

这里可以使用全视场像差来检查视场采样。视场上像差的快速变化可能意味着需要更多的视场点。

然后,可以手动添加其他指标,其中手动添加的操作数位于评价函数的顶部:

·放大率:一个规格是关于放大率。可以添加REA*(真实光线坐标)操作数,以检查LCD显示器上光线X和Y的位置。DIVI操作数可用于计算放大率(像面上的主光线高度与物面上的比率)。将在这些DIVI操作数上放置10的权重因子。

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

·畸变:最后一个规格是关于畸变。它必须低于2%。

像畸变这样的近轴计算并不总是能很好地处理具有坐标间断的非对称系统。使用畸变操作数时,请始终验证结果是否合理。可以使用CENX和CENY对视场的四个视场角(视场2至5)手动检查和/或计算质心的位置。

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

评价函数现已准备就绪。在优化之前,可以将自由曲面反射镜从标准面更改为自由曲面;这里是一个Zernike标准矢高曲面,有11项。

Zernike多项式非常适合优化,但它们可能需要转换回标准多项式,如用于制造的扩展多项式。

Zernike曲面的归一化半径设置为大于半直径的固定值。在优化过程中,如果该半径不是固定的,则每次更新时,都会在优化期间在评价函数上产生一些变动。

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

优化之前的文件称为“HUD_Step1_MF_before_optim.zar”。

·变量:

Z1是Piston项;它不会被使用。

Z2和Z3是倾斜项。LCD显示器等元件的不同位置是固定的,因此不会使用倾斜项。

系统包含两个变量:后焦距的长度,自由曲面反射镜的曲率半径。

在进行第一次局部优化后,可以检查全视场像差:

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

整个视场的平均值:

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

Z4是离焦/场曲,并设置为变量。

Z5和Z6是主初级像散,并且设置为变量。

优化后,整个视场的平均值为:

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

Z7和Z8是初级彗差,并且设置为变量。

Z9和Z10是彗差,并且被设置为变量。

Z11是平衡的初级球差,并且被设置为变量。

然后是一分钟的Hammer优化:

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

优化后的文件称为“HUD_Step1_MF_after_opti.zar”。

优化结果

优化的结果可以看出,该系统尚未翻转,因此性能不是“真实”性能,而是“翻转”性能。

·光斑大小(RMS):光斑的RMS半径低于200微米。它没有提供太多信息;当系统翻转时,检查角度大小将更令人感兴趣。

·像散与彗差:可以再次检查全视场像差,以查看优化是否降低了初级像散。除了像散之外,最有可能影响HUD成像质量的Zernike项是彗差和球差。用于以下结果的视场是总视场,它表示驾驶员看到的最大角度范围,允许头部在HUD眼盒内垂直和水平移动。它还显示了两只眼睛所看到的视差。

整个视场的平均值为:

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

像散的范围从80减少到11 waves。下图使用的是相对比例(显示设置),从绝对值中减去平均值。它可以更好地了解整个视场的像差变化:

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

· 畸变:略高于2%

Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分文章来源地址https://www.toymoban.com/news/detail-484673.html

到了这里,关于Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • FPGA—HDMI 显示器驱动设计与验证(附代码)

    目录 1.理论 2.实操 2.1 顶层模块 2.2 时钟生成模块 2.3 HDMI 驱动控制模块 2.3.1 编码模块 2.3.2 并行转串行模块 2.4 顶层仿真验证 3.总结 HDMI简介       VGA 接口体积较大;且传输的模拟信号易受外界干扰。因此在VGA 接口之后,首先推出的是 DVI 接口, DVI 是基于 TMDS(Transition Minim

    2024年02月10日
    浏览(46)
  • 基于Verilog HDL LCD1602显示器的设计

    昨天刚结束FPGA的课程设计,做的题目是用Verilog HDL编写LCD1602字符显示程序,并在开发板DE2-115上进行演示,实现的功能是显示移动字符和滚动字符,并通过一个开关来控制模式的切换。此次课程设计参考了网站上许多前辈大佬的文章,在他们的基础上进行修改。但发现许多的

    2024年02月01日
    浏览(69)
  • 毕业设计 基于51单片机控制LED点阵显示器的设计

    序 🔥 毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的

    2024年02月02日
    浏览(72)
  • 基于51单片机带显示器的音乐盒设计

    点击链接获取Keil源码与Project Backups仿真图: https://download.csdn.net/download/qq_64505944/87512938?spm=1001.2014.3001.5503 源码获取 摘 要 单片微型计算机室大规模集成电路技术发展的产物,属于第四代电子计算机它具有高性能、高速度、体积小、价格低廉、稳定可靠、应用广泛的特点。他的

    2024年02月06日
    浏览(48)
  • 物理机ubuntu系统--远程控制-不接显示器-使用虚拟显示器-设置分辨率1920*1080

    liunx系统与intel显卡驱动不兼容的机制问题,导致有些机器无法在没有显示器的情况下,不能进行远程,向日葵和TeamViewer都不行。 因此使用虚拟显示器的软件 Xorg 。 反正网上很多资料。本文只是添加图片,更加详细的过程,以及遇到的情况,给予需要帮助的人,帮到你的话,

    2024年02月10日
    浏览(65)
  • 【FPGA显示驱动(Display)】- 使用Verilog实现8位数字显示器

    【FPGA显示驱动(Display)】- 使用Verilog实现8位数字显示器 FPGA是一种可编程的逻辑器件,它可以通过不同的配置来实现多种应用。在本文中,我们将探讨如何使用Verilog语言在FPGA上实现8位数字显示器。 硬件环境 Xilinx ISE Design Suite 14.7 FPGA开发板 八段数码管 设计实现 在Verilog代

    2024年02月04日
    浏览(47)
  • 显示器屏幕oled的性能、使用场景、维护

    OLED显示器屏幕具有许多独特的性能和使用场景,以下是关于OLED显示器屏幕的性能、使用场景和维护的详细介绍: 一、性能 色彩鲜艳:OLED显示器屏幕能够呈现出更加鲜艳的色彩,色彩饱和度高,色彩还原性好,可以给用户带来更加真实的视觉体验。 对比度高:OLED显示器屏幕

    2024年02月03日
    浏览(47)
  • 使用STM32微控制器驱动LCD1602显示器

    驱动LCD1602显示器是嵌入式系统常见的任务之一,而STM32微控制器因其灵活性和丰富的外设而成为了广泛采用的解决方案。 在这篇文章中,我们将探讨如何使用STM32微控制器来驱动LCD1602显示器。我们将从STM32的GPIO配置、延时函数以及LCD1602的初始化和写入数据等方面展开讨论,

    2024年04月17日
    浏览(43)
  • 在VMware虚拟机中实现双显示器的使用

    在VMware虚拟机中,使用多个显示器可以提高工作效率和舒适度。本文将介绍如何在VMware虚拟机上配置双显示器,并提供相应的源代码示例。 步骤1:检查虚拟机设置 首先,确保你的虚拟机设置允许使用多个显示器。打开VMware虚拟机,选择“编辑”菜单,然后选择“虚拟机设置

    2024年02月05日
    浏览(55)
  • Windows10 pc使用Apple Studio Display显示器设置

    近期购买了台Apple Studio Display显示器,大概花了约1.5w,连接windows台式机,显卡为NVIDA GTX-1660,而Apple Studio Display只有雷电接口,尝试多种转接方式,均以失败告终,最终参考b站up主使用贝尔金VR线成功,贝尔金VR线京东链接 , 附图如下: 这边测试NVIDA RTX-2060 Super 、NVIDA GTX-16

    2024年02月11日
    浏览(229)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包