“零”代码改动,静态编译让太乙Stable Diffusion推理速度翻倍

这篇具有很好参考价值的文章主要介绍了“零”代码改动,静态编译让太乙Stable Diffusion推理速度翻倍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

“零”代码改动,静态编译让太乙Stable Diffusion推理速度翻倍

作者|梁德澎
 

AI 作图领域的工具一直不尽人意,直到去年 8 月 Stable Diffusion 开源,成为AI 图像生成领域无可争辩的划时代模型。

为了提升其推理效率,OneFlow 首度将 Stable Diffusion 模型加速至“一秒出图”时代,极大提升了文生图的速度,在AIGC领域引发巨大反响,并得到了 Stability.ai 官方的支持。至今,OneFlow 还在不断刷新 SOTA 纪录。

不过,由于目前大部分团队主要是基于翻译 API + 英文 Stable Diffusion 模型进行开发,所以在使用中文独特的叙事和表达时,英文版模型就很难给出正确匹配的图片内容,这对部分国内用户来说不太方便。


为了解决这一问题,国内的IDEA 研究院认知计算与自然语言研究中心(IDEA CCNL)也开源了第一个中文版本的“太乙 Stable Diffusion”,基于0.2亿筛选过的中文图文对训练。上个月,太乙 Stable Diffusion 在 HuggingFace 上有近 15 万下载量,是下载量最大的中文 Stable Diffusion。

近期,OneFlow 团队为太乙 Stable Diffusion 适配了 OneFlow 后端,大大提升了推理性能,也可以做到一秒出图。不少开发者好奇OneFlow使用了哪些优化“秘笈”,后文将进行简要解读。

欢迎Star、运行 OneFlow 版太乙 Stable Diffusion:
 

https://github.com/Oneflow-Inc/diffusers/wiki/How-to-Run-OneFlow-Stable-Diffusion#without-docker

1对比 PyTorch,OneFlow 将“太乙 Stable Diffusion”推理速度提升1倍以上  

下面的图表分别展示了在 A100 (PCIe 40GB / SXM 80GB),V100 ( SXM2 32GB ), RTX 2080,RTX 3080 Ti,RTX 3090, 和 T4 不同类型的 GPU 硬件上分别使用 PyTorch, 和 On文章来源地址https://www.toymoban.com/news/detail-485383.html

到了这里,关于“零”代码改动,静态编译让太乙Stable Diffusion推理速度翻倍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • AI绘图实战(七):室内设计线稿渲染、景观设计手绘稿改动、建筑照片转线稿|Stable Diffusion成为设计师生产力工具

    S:AI能取代设计师么? I :至少在设计行业,目前AI扮演的主要角色还是超级工具,要顶替?除非甲方对设计效果无所畏惧~~ 预先学习 : 安装及其问题解决参考:《Windows安装Stable Diffusion WebUI及问题解决记录》; 运行使用时问题《Windows使用Stable Diffusion时遇到的各种问题整理

    2024年02月06日
    浏览(63)
  • OpenVINO异步Stable Diffusion推理优化方案

    2022年, Stable Diffusion模型横空出世,其成为AI行业从传统深度学习时代走向AIGC时代的标志性模型之一 ,并为工业界,投资界,学术界以及竞赛界都注入了新的AI想象空间, 让AI再次性感 。 Stable Diffusion是计算机视觉领域的一个生成式大模型,能够进行文生图(txt2img)和图生图

    2024年02月05日
    浏览(31)
  • 【Stable Diffusion/NovelAI Diffusion的AMD GPU加速推理探索】

    测试机子配置: 1:AMD RX6600(显存8g)+i5 12600KF 16g内存 (台式机) 2:RTX 3070 laptop(显存8g)+i7 10870H 32g内存 (HP暗夜精灵笔记本) 两台电脑平均性能差不多,当然N卡肯定更好一点 这边我们还是MS大发好,用MS的DirectML推理框架推理,虽然据小道消息反馈DML推理效率远不如Cuda,但是要知道

    2024年02月01日
    浏览(36)
  • 在英特尔 CPU 上加速 Stable Diffusion 推理

    前一段时间,我们向大家介绍了最新一代的 英特尔至强 CPU (代号 Sapphire Rapids),包括其用于加速深度学习的新硬件特性,以及如何使用它们来加速自然语言 transformer 模型的 分布式微调 和 推理。 英特尔至强处理器: https://www.intel.com/content/www/us/en/products/details/processors/xeon/scal

    2024年02月09日
    浏览(54)
  • 使用 PAI-Blade 优化 Stable Diffusion 推理流程

    AIGC是人工智能计算领域里发展迅速的重要业务。Stable Diffusion 是其中最热门的开源模型,受到广泛关注。然而,随着应用场景不断扩大,Stable Diffusion所面临的推理时延和计算成本问题也越来越突出。 PAI-Blade 是 PAI 推出的通用推理优化工具,可以通过模型系统联合优化,使模

    2024年02月09日
    浏览(44)
  • 基于onnx模型和onnx runtime推理stable diffusion

    直接用diffusers的pipeline: 在pipeline_onnx_stable_diffusion的基础上修改得到的直接调用onnx模型版本,可以用于其他推理引擎推理参考: pipe_onnx_simple.py onnx_utils_simple.py 生成1张512x512图的shape信息

    2024年02月11日
    浏览(36)
  • 使用 PAI-Blade 优化 Stable Diffusion 推理流程(二)

    上一篇中,我们使用了 PAI-Blade 优化了 diffusers 中 Stable Diffusion 模型。本篇,我们继续介绍使用 PAI-Blade 优化 LoRA 和 Controlnet 的推理流程。相关优化已经同样在  registry.cn-beijing.aliyuncs.com/blade_demo/blade_diffusion 镜像中可以直接使用。同时,我们将介绍 Stable-Diffusion-webui 中集成 PA

    2024年02月09日
    浏览(41)
  • 【深度学习】SDXL tensorRT 推理,Stable Diffusion 转onnx,转TensorRT

    juggernautXL_version6Rundiffusion.safetensors文件是pth pytroch文件,需要先转为diffusers 的文件结构。 FP16在后面不好操作,所以最好先是FP32: 有了diffusers 的文件结构,就可以转onnx文件。 项目:https://huggingface.co/docs/diffusers/optimization/onnx stabilityai/stable-diffusion-xl-1.0-tensorrt 项目:https://hug

    2024年01月19日
    浏览(54)
  • AIGC与AidLux互联应用——AidLux端AIGC测评(二)PC端&云端Stable Diffusion模型推理应用(文生图,图生图)

    整体运行架构 Stable Diffusion模型搭建首先下载diffusers,然后安装,命令如下: git clone https://github.com/huggingface/diffusers.git pip install diffusers cd diffusers pip install . ubuntu和win系统下都可以 文生图,图生图代码和训练好的模型见百度网盘(训练好的模型很大,十几个g) 修改txt2jpg_in

    2024年02月09日
    浏览(54)
  • Stable Diffusion代码简介

    Stable Diffusion是一个开源的实时数据流处理引擎,用于处理流式数据。其web UI提供了一个可视化界面来展示数据流的处理过程。 以下是Stable Diffusion web UI的详细代码说明: 1. 界面设计 Stable Diffusion web UI使用React框架进行开发,主要组件包括Header、Sidebar、Content和Footer组件。其中

    2024年02月09日
    浏览(74)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包